摘要:
An electrical fuse and a method of forming the same are presented. A first-layer conductive line is formed over a base material. A via is formed over the first-layer conductive line. The via preferably comprises a barrier layer and a conductive material. A second-layer conductive line is formed over the via. A first external pad is formed coupling to the first-layer conductive line. A second external pad is formed coupling to the second-layer conductive line. The via, the first conductive line and the second conductive line are adapted to be an electrical fuse. The electrical fuse can be burned out by applying a current. The vertical structure of the preferred embodiment is suitable to be formed in any layer.
摘要:
An electrical fuse and a method of forming the same are presented. A first-layer conductive line is formed over a base material. A via is formed over the first-layer conductive line. The via preferably comprises a barrier layer and a conductive material. A second-layer conductive line is formed over the via. A first external pad is formed coupling to the first-layer conductive line. A second external pad is formed coupling to the second-layer conductive line. The via, the first conductive line and the second conductive line are adapted to be an electrical fuse. The electrical fuse can be burned out by applying a current. The vertical structure of the preferred embodiment is suitable to be formed in any layer.
摘要:
Provided are a fuse structure and a method for manufacturing the fuse structure. In one example, the method includes providing a multilayer interconnect structure (MLI) over a semiconductor substrate. The MLI includes multiple fuse connection and bonding connection features. A passivation layer is formed over the MLI and patterned to form openings, with each opening being aligned with one of the fuse connection or bonding connection features. A conductive layer is formed on the passivation layer and in the openings. The conductive layer is patterned to form bonding features and fuse structures. Each bonding feature is in contact with one of the bonding connection features, and each fuse structure is in contact with two of the fuse connection features. A cap dielectric layer is formed over the fuse structures and patterned to expose at least one of the bonding features while leaving the fuse structures covered.
摘要:
An electrical fuse and a method of forming the same are presented. A first-layer conductive line is formed over a base material. A via is formed over the first-layer conductive line. The via preferably comprises a barrier layer and a conductive material. A second-layer conductive line is formed over the via. A first external pad is formed coupling to the first-layer conductive line. A second external pad is formed coupling to the second-layer conductive line. The via, the first conductive line and the second conductive line are adapted to be an electrical fuse. The electrical fuse can be burned out by applying a current. The vertical structure of the preferred embodiment is suitable to be formed in any layer.
摘要:
An electrical fuse and a method of forming the same are presented. A first-layer conductive line is formed over a base material. A via is formed over the first-layer conductive line. The via preferably comprises a barrier layer and a conductive material. A second-layer conductive line is formed over the via. A first external pad is formed coupling to the first-layer conductive line. A second external pad is formed coupling to the second-layer conductive line. The via, the first conductive line and the second conductive line are adapted to be an electrical fuse. The electrical fuse can be burned out by applying a current. The vertical structure of the preferred embodiment is suitable to be formed in any layer.
摘要:
A semiconductor device and method for fabricating a semiconductor device protecting a resistive structure in gate replacement processing is disclosed. The method comprises providing a semiconductor substrate; forming at least one gate structure including a dummy gate over the semiconductor substrate; forming at least one resistive structure including a gate over the semiconductor substrate; exposing a portion of the gate of the at least one resistive structure; forming an etch stop layer over the semiconductor substrate, including over the exposed portion of the gate; removing the dummy gate from the at least one gate structure to create an opening; and forming a metal gate in the opening of the at least one gate structure.
摘要:
A method of manufacturing a semiconductor device is disclosed. The method provides a semiconductor substrate with at least a PMOS device and at least an NMOS device thereon. A first insulating layer is formed overlying the NMOS and PMOS devices. A second insulating layer is formed overlying the first insulating layer. The second insulating layer overlying the PMOS device is thinned to leave portion of the second insulating layer. A first thermal treatment is performed on the NMOS and PMOS devices. The second insulating layer overlying the NMOS device and the remaining portion of the second insulating layer overlying the PMOS device are removed and the first insulating layer overlying the NMOS and PMOS devices is thinned to leave a remaining portion thereof.
摘要:
Silicon on insulator (SOI) devices and methods for fabricating the same are provided. An exemplary embodiment of a SOI device comprises a substrate. A first insulating layer is formed over the substrate. A plurality of semiconductor islands is formed over the first insulating layer, wherein the semiconductor islands are isolated from each other. A second insulating layer is formed over the first insulating layer, protruding over the semiconductor islands and surrounding thereof. At least one recess is formed in a portion of the second insulating layer adjacent to a pair of the semiconductor islands. A first dielectric layer is formed on a portion of each of the semiconductor islands. A conductive layer is formed over the first dielectric layer and over the second insulating layer exposed by the recess. A pair of source/drain regions is oppositely formed in portions of each of the semiconductor islands not covered by the first dielectric layer and the conductive layer.
摘要:
Silicon on insulator (SOI) devices and methods for fabricating the same are provided. An exemplary embodiment of a SOI device comprises a substrate. A first insulating layer is formed over the substrate. A plurality of semiconductor islands is formed over the first insulating layer, wherein the semiconductor islands are isolated from each other. A second insulating layer is formed over the first insulating layer, protruding over the semiconductor islands and surrounding thereof. At least one recess is formed in a portion of the second insulating layer adjacent to a pair of the semiconductor islands. A first dielectric layer is formed on a portion of each of the semiconductor islands. A conductive layer is formed over the first dielectric layer and over the second insulating layer exposed by the recess. A pair of source/drain regions is oppositely formed in portions of each of the semiconductor islands not covered by the first dielectric layer and the conductive layer.
摘要:
A semiconductor device having a core device with a high-k gate dielectric and an I/O device with a silicon dioxide or other non-high-k gate dielectric, and a method of fabricating such a device. A core well and an I/O well are created in a semiconductor substrate and separated by an isolation structure. An I/O device is formed over the I/O well and has a silicon dioxide or a low-k gate dielectric. A resistor may be formed on an isolation structure adjacent to the core well. A core-well device such as a transistor is formed over the core well, and has a high-k gate dielectric. In some embodiments, a p-type I/O well and an n-type I/O well are created. In a preferred embodiment, the I/O device or devices are formed prior to forming the core device and protected with a sacrificial layer until the core device is fabricated.