Abstract:
The present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery including same. More particularly, the present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery including: a core including LiMn2O4; and LiMn(PO3)3 distributed on the surface of the core. In accordance with the present disclosure, the time and cost for manufacturing a lithium secondary battery can be reduced and the manufactured lithium secondary battery has superior electrochemical properties.
Abstract translation:本发明涉及一种锂二次电池用纳米复合阴极活性物质及其制备方法,以及包含锂二次电池的锂二次电池。 更具体地,本公开涉及一种用于锂二次电池的纳米复合阴极活性材料,其包括:包含LiMn 2 O 4的核; 和分布在芯表面上的LiMn(PO3)3。 根据本公开,可以减少制造锂二次电池的时间和成本,并且制造的锂二次电池具有优异的电化学性能。
Abstract:
Provided is a cathode material for a rechargeable magnesium battery, represented by the chemical formula of Ag2SxSe1-x (0≤x≤1), a highly stable cathode material and a rechargeable magnesium battery including the same. The cathode material for a rechargeable magnesium battery has a higher discharge capacity and higher discharge voltage as compared to a typical commercially available cathode material, Chevrel phase, and shows excellent stability in an electrolyte for a rechargeable magnesium battery including chloride ions. In addition, after evaluating the cycle life of the cathode material, the cathode material shows an excellent discharge capacity per unit weight after 500 charge/discharge cycles, and thus is useful for a cathode material for a rechargeable magnesium battery.
Abstract:
Disclosed is an electrolyte solution for a magnesium rechargeable battery with a high ionic conductivity and a wide electrochemical window compared to the conventional electrolyte solution. The electrolyte solution is prepared by dissolving magnesium metal into the ethereal solution using combinations of metal chloride catalysts. The electrolyte solution can be applied to fabricate magnesium rechargeable batteries and magnesium hybrid batteries with a markedly increased reversible capacity, rate capability, and cycle life compared to those batteries employing the conventional electrolyte solution. Also disclosed is a method for preparing the electrolyte.
Abstract:
Disclosed is a cathode active material for a lithium ion secondary battery which includes a lithium manganese borate compound and a manganese oxide. The lithium manganese borate compound contains a larger amount of lithium than conventional lithium manganese borate compounds. Therefore, a larger amount of lithium is deintercalated in a battery including the cathode active material, and as a result, the specific capacity of the battery reaches 100-160 mAh/g, which is much higher than that of conventional lithium ion secondary batteries (
Abstract:
The present disclosure provides a composite wherein NaCl nanoparticles are uniformly dispersed on reduced graphene oxide (rGO), a positive electrode active material including the same, a sodium secondary battery including the same, and a method for preparing the same. The positive electrode active material according to the present disclosure has a structure wherein NaCl nanoparticles are uniformly dispersed on rGO in a one-step process through chemical self-assembly. Therefore, the positive electrode active material according to the present disclosure exhibits superior electrochemical properties with high capacity because the small NaCl particles are dispersed uniformly and is economically favorable because the preparation process is simple.
Abstract:
Provided is a furnace for a transmission mode X-ray diffractometer and a transmission mode X-ray diffractometer using the same. The furnace for a transmission mode X-ray diffractometer includes a sample heating unit disposed adjacent to a quartz capillary accommodating a sample to heat the sample, and a main body disposed to surround the quartz capillary and the sample heating unit and having an insulating function for allowing the heated sample to maintain a thermal equilibrium state.
Abstract:
Provided are an electrolyte for a magnesium secondary battery having improved ion conductivity and stability, and a method for preparing the same. The electrolyte for a magnesium secondary battery shows higher ion conductivity as compared to the electrolyte according to the related art, increases the dissociation degree of a magnesium halide electrolyte salt, and provides stable electrochemical characteristics. In addition, after determining the capacity, output characteristics and cycle life of the magnesium secondary battery including the electrolyte, the battery provides significantly higher discharge capacity after 100 cycles, as compared to the electrolyte according to the related art. Therefore, the electrolyte may be useful for an electrolyte solution of a magnesium secondary battery.
Abstract:
The present disclosure relates to a cathode active material for a secondary battery, a cathode for a secondary battery including the same, a secondary battery including the cathode for a secondary battery and manufacturing methods thereof. More particularly, it is possible to obtain a secondary battery having excellent electrochemical characteristics by electrochemically inducing a structural phase change in the cathode active material of a secondary battery including NaCl as a cathode active material.
Abstract:
Disclosed is an anode material for a sodium secondary battery. The anode material includes a tin fluoride-carbon composite composed of a tin fluoride and a carbonaceous material. The anode material can be used to improve the charge/discharge capacity, charge/discharge efficiency, and electrochemical activity of a sodium secondary battery. Also provided are a method for preparing the anode material and a sodium secondary battery including the anode material.