摘要:
NAND-type flash memory devices and methods of fabricating the same are provided. The NAND-type flash memory device includes a plurality of isolation layers running parallel with each other, which are formed at predetermined regions of a semiconductor substrate. This device also includes a string selection line pattern, a plurality of word line patterns and a ground selection line pattern which cross over the isolation layers and active regions between the isolation layers. Source regions are formed in the active regions adjacent to the ground selection line patterns and opposite the string selection line pattern. The source regions and the isolation layers between the source regions are covered with a common source line running parallel with the ground selection line pattern.
摘要:
NAND-type flash memory devices and methods of fabricating the same are provided. The NAND-type flash memory device includes a plurality of isolation layers running parallel with each other, which are formed at predetermined regions of a semiconductor substrate. This device also includes a string selection line pattern, a plurality of word line patterns and a ground selection line pattern which cross over the isolation layers and active regions between the isolation layers. Source regions are formed in the active regions adjacent to the ground selection line patterns and opposite the string selection line pattern. The source regions and the isolation layers between the source regions are covered with a common source line running parallel with the ground selection line pattern.
摘要:
NAND-type flash memory devices and methods of fabricating the same are provided. The NAND-type flash memory device includes a plurality of isolation layers running parallel with each other, which are formed at predetermined regions of a semiconductor substrate. This device also includes a string selection line pattern, a plurality of word line patterns and a ground selection line pattern which cross over the isolation layers and active regions between the isolation layers. Source regions are formed in the active regions adjacent to the ground selection line patterns and opposite the string selection line pattern. The source regions and the isolation layers between the source regions are covered with a common source line running parallel with the ground selection line pattern.
摘要:
NAND-type flash memory devices and methods of fabricating the same are provided. The NAND-type flash memory device includes a plurality of isolation layers running parallel with each other, which are formed at predetermined regions of a semiconductor substrate. This device also includes a string selection line pattern, a plurality of word line patterns and a ground selection line pattern which cross over the isolation layers and active regions between the isolation layers. Source regions are formed in the active regions adjacent to the ground selection line patterns and opposite the string selection line pattern. The source regions and the isolation layers between the source regions are covered with a common source line running parallel with the ground selection line pattern.
摘要:
This disclosure provides cells of nonvolatile memory devices with floating gates and methods for fabricating the same. The cell of the nonvolatile memory device includes device isolation layers in parallel with each other on a predetermined region of a semiconductor substrate that define a plurality of active regions. Each device isolation layer has sidewalls that project over the semiconductor substrate. A plurality of word lines crosses over the device isolation layers. A tunnel oxide layer, a floating gate, a gate interlayer dielectric layer, and a control gate electrode are sequentially stacked between each active region and each word line. The floating gate and the control gate electrode have sidewalls that are self-aligned to the adjacent device isolation layers. The method for forming the self-aligned floating gate and the control gate electrode includes forming trenches in a semiconductor substrate to define a plurality of active regions and concurrently forming an oxide layer pattern, a floating gate pattern, a dielectric layer pattern and a control gate pattern that are sequentially stacked. A conductive layer is then formed on the device isolation layers and the control gate pattern. Thereafter, the conductive layer, the control gate pattern, the dielectric layer pattern, the floating gate pattern, and the oxide layer pattern are successively patterned.
摘要:
This disclosure provides cells of nonvolatile memory devices with floating gates and methods for fabricating the same. The cell of the nonvolatile memory device includes device isolation layers in parallel with each other on a predetermined region of a semiconductor substrate that define a plurality of active regions. Each device isolation layer has sidewalls that project over the semiconductor substrate. A plurality of word lines crosses over the device isolation layers. A tunnel oxide layer, a floating gate, a gate interlayer dielectric layer, and a control gate electrode are sequentially stacked between each active region and each word line. The floating gate and the control gate electrode have sidewalls that are self-aligned to the adjacent device isolation layers. The method for forming the self-aligned floating gate and the control gate electrode includes forming trenches in a semiconductor substrate to define a plurality of active regions and concurrently forming an oxide layer pattern, a floating gate pattern, a dielectric layer pattern and a control gate pattern that are sequentially stacked. A conductive layer is then formed on the device isolation layers and the control gate pattern. Thereafter, the conductive layer, the control gate pattern, the dielectric layer pattern, the floating gate pattern, and the oxide layer pattern are successively patterned.
摘要:
This disclosure provides cells of nonvolatile memory devices with floating gates and methods for fabricating the same. The cell of the nonvolatile memory device includes device isolation layers in parallel with each other on a predetermined region of a semiconductor substrate that define a plurality of active regions. Each device isolation layer has sidewalls that project over the semiconductor substrate. A plurality of word lines crosses over the device isolation layers. A tunnel oxide layer, a floating gate, a gate interlayer dielectric layer, and a control gate electrode are sequentially stacked between each active region and each word line. The floating gate and the control gate electrode have sidewalls that are self-aligned to the adjacent device isolation layers. The method for forming the self-aligned floating gate and the control gate electrode includes forming trenches in a semiconductor substrate to define a plurality of active regions and concurrently forming an oxide layer pattern, a floating gate pattern, a dielectric layer pattern and a control gate pattern that are sequentially stacked. A conductive layer is then formed on the device isolation layers and the control gate pattern. Thereafter, the conductive layer, the control gate pattern, the dielectric layer pattern, the floating gate pattern, and the oxide layer pattern are successively patterned.
摘要:
A non-volatile memory device comprises a gate line that includes a gate dielectric layer, a bottom gate pattern, an inter-gate dielectric and a top gate pattern, which are sequentially stacked. The width of the inter-gate dielectric is narrower than that of the bottom gate pattern.
摘要:
A non-volatile memory device comprises a gate line that includes a gate dielectric layer, a bottom gate pattern, an inter-gate dielectric and a top gate pattern, which are sequentially stacked. The width of the inter-gate dielectric is narrower than that of the bottom gate pattern.
摘要:
A non-volatile memory device comprises a gate line that includes a gate dielectric layer, a bottom gate pattern, an inter-gate dielectric and a top gate pattern, which are sequentially stacked. The width of the inter-gate dielectric is narrower than that of the bottom gate pattern.