摘要:
Disclosed are a coating agent for drug releasing stents, a method for preparing the same and a drug releasing stent coated therewith. The coating agent comprises a biologically active material and a coating material selected from among pullulan acetate, represented by the following Chemical Formula 1, and a polyurethane-surfactant mixture.
摘要:
Disclosed are a coating agent for drug releasing stents, a method for preparing the same and a drug releasing stent coated therewith. The coating agent for drug releasing stents comprises nanoparticles with a biologically active material entrapped therein, wherein the particles are formed of a polyethyleneimine (PEI)-deoxycholic acid (DOCA) polymer (PDo) in which 1˜8 moles of DOCA are grafted per mole of PEI.
摘要:
Disclosed are a coating agent for drug releasing stents, a method for preparing the same and a drug releasing stent coated therewith. The coating agent for drug releasing stents comprises nanoparticles with a biologically active material entrapped therein, wherein the particles are formed of a polyethyleneimine (PEI)-deoxycholic acid (DOCA) polymer (PDo) in which 1˜8 moles of DOCA are grafted per mole of PEI.
摘要:
Disclosed are a coating agent for drug releasing stents, a method for preparing the same and a drug releasing stent coated therewith. The coating agent comprises a biologically active material and a coating material selected from among pullulan acetate, represented by the following Chemical Formula 1, and a polyurethane-surfactant mixture.
摘要:
This invention relates to a method of manufacturing a coating agent for a drug releasing stent and to a coating agent for a drug releasing stent manufactured thereby. This method includes (1) dissolving polyurethane in tetrahydrofuran, (2) dissolving pluronic F-127 in tetrahydrofuran, (3) dissolving a gemcitabine compound in ethanol, (4) mixing these three solutions obtained in (1) to (3) thus preparing a solution mixture, (5) applying the solution mixture obtained in (4) on a stent coated with a Teflon film, (6) drying the stent of (5) for a predetermined period of time and then immersing the stent in a polyurethane solution in tetrahydrofuran, and (7) removing the stent immersed in (6) from the polyurethane solution and then drying the stent, so that the rate of release of an anti-cancer drug applied on the stent can be continuously and maximally improved thereby maximizing anti-cancer efficacy.
摘要:
The present invention relates to a temperature-sensitive carrier for carrying a physiologically active substance and a preparation method thereof. Specifically, the temperature-sensitive carrier according to the present invention comprises an amphiphilic biodegradable block copolymer containing polysaccharide or polysaccharide and succinic anhydride as a hydrophilic block and polylactide as a non-ionic block. A hydrophilic polymer-polylactide copolymer according to the present invention forms a stable complex with a physiologically active substance such as protein, polynucleotide and the like in vivo via ionic bonding and temperature-sensitive hydrophobic bonding. Therefore, a copolymer according to the present invention can facilitate in vivo delivery of a physiologically active substance and used as an in vivo drug delivery system.
摘要:
Drug delivery compositions for specific delivery of a drug to a tumor are described. These compositions include a core for sequestering the drug and a shell to which a ligand is attached for delivery of a drug to target cells. Since normal cells may also be targeted by the ligand, the compositions embed the ligand in the shell until the localized conditions surrounding the tumor cause the ligand to be displayed on the surface of the shell. One composition exhibits shrinkage of the shell at tumor pH, whereas another composition exhibits extension of the ligand at tumor pH. Still another composition causes the ligand to be exhibited at an elevated temperature.
摘要:
Mixed micelles containing poly(L-histidine)-poly(ethylene glycol) block copolymer and poly(L-lactic acid)-poly(ethylene glycol) block copolymer are a pH-sensitive drug carrier that release the drug in an acidic microenvironment, but not in the blood. Since the microenvironment of solid tumors is acidic, these mixed micelles are useful for treating cancer, including those cancers exhibiting multidrug resistance. Targeting ligands, such as folate, can also be attached to the mixed micelles for enhancing drug delivery into cells. Methods of making poly(L-histidine), synthetic intermediates, and block copolymers are also described.
摘要:
Mixed micelles containing poly(L-histidine)-poly(ethylene glycol) block copolymer and poly(L-lactic acid)-poly(ethylene glycol) block copolymer are a pH-sensitive drug carrier that release the drug in an acidic microenvironment, but not in the blood. Since the microenvironment of solid tumors is acidic, these mixed micelles are useful for treating cancer, including those cancers exhibiting multidrug resistance. Targeting ligands, such as folate, can also be attached to the mixed micelles for enhancing drug delivery into cells. Methods of making poly(L-histidine), synthetic intermediates, and block copolymers are also described.
摘要:
Mixed micelles containing poly(L-histidine)-poly(ethylene glycol) block copolymer and poly(L-lactic acid)-poly(ethylene glycol) block copolymer are a pH-sensitive drug carrier that release the drug in an acidic microenvironment, but not in the blood. Since the microenvironment of solid tumors is acidic, these mixed micelles are useful for treating cancer, including those cancers exhibiting multidrug resistance. Targeting ligands, such as folate, can also be attached to the mixed micelles for enhancing drug delivery into cells. Methods of treating a warm-blooded animal with such a drug are disclosed.