摘要:
The present invention relates to a method for preparing substrate-molecular sieve layer complex by vising ultra-sound and apparatuses used therein, more particularly to a method for preparing substrate-molecular sieve layer complex by combining substrate, coupling compound and molecular sieve particle, wherein covalent, ionic, coordinate or hydrogen bond between a substrate and a coupling compound; molecular sieve particle and coupling compound; coupling compounds; coupling compound and intermediate coupling compound is induced by using 15 KHz-100 MHz of ultrasound instead of simple reflux to combine substrate and molecular sieve particles by various processes, further to reduce time and energy, to retain high binding velocity, binding strength, binding intensity and density remarkably, to attach molecular sieve particle uniformly onto all substrates combined with coupling compound selectively, even though substrate with coupling compound and substrate without coupling compound exist together; and apparatuses installed therein, which can improve to produce substrate-molecular sieve layer complex in a large scale.
摘要:
The present invention relates to a method for preparing substrate-molecular sieve layer complex by vising ultra-sound and apparatuses used therein, more particularly to a method for preparing substrate-molecular sieve layer complex by combining substrate, coupling compound and molecular sieve particle, wherein covalent, ionic, coordinate or hydrogen bond between a substrate and a coupling compound; molecular sieve particle and coupling compound; coupling compounds; coupling compound and intermediate coupling compound is induced by using 15 KHz-100 MHz of ultrasound instead of simple reflux to combine substrate and molecular sieve particles by various processes, further to reduce time and energy, to retain high binding velocity, binding strength, binding intensity and density remarkably, to attach molecular sieve particle uniformly onto all substrates combined with coupling compound selectively, even though substrate with coupling compound and substrate without coupling compound exist together; and apparatuses installed therein, which can improve to produce substrate-molecular sieve layer complex ina large scale.
摘要:
A method for preparing a composite of zeolite-fiber substrate includes the steps of reacting a fiber substrate or a zeolite with a linking compound to form an intermediate of linking compound-fiber substrate or zeolite-linking compound, and preparing the composite of zeolite-linking compound-fiber substrate by linking the intermediate of linking compound-fiber substrate to the fiber substrate or linking the intermediate of zeolite-linking compound to the zeolite, in which the linking is induced by sonication.
摘要:
The present invention relates to a method for preparing composites of substrate-molecular sieve, in particular, to a method for preparing a composite of substrate-molecular sieve, which comprises applying a physical pressure to molecular sieve crystals against a substrate to form a chemical bond between the molecular sieve crystal and the substrate. The present invention requiring no solvents, reactors and other equipments enables molecular sieve crystals to be stably attached to the surface of substrates through various chemical bonds, particularly ionic present invention ensures the synthesis of substrate-molecular sieve composites with enhanced attachment rate, degree of lateral close packing (DCP) and attachment strength in more time-saving and energy-saving manners. The present method works well for molecular sieve crystals with lager sizes (e.g., more than 3 μm) with no generation of parasitic crystals. Furthermore, the present invention shows excellent applicability to large substrates, enabling the mass production of substrate-molecular sieve composites.
摘要:
The present invention relates to a method for preparing composites of substrate-molecular sieve, which comprises applying a physical pressure to molecular sieve crystals against a substrate to form a chemical bond between the molecular sieve crystal and the substrate. The present invention requiring no solvents, reactors and other equipments enables molecular sieve crystals to be stably attached to the surface of substrates through various chemical bonds, particularly ionic present invention ensures the synthesis of substrate-molecular sieve composites with enhanced attachment rate, degree of lateral close packing (DCP) and attachment strength in more time-saving method works well for molecular sieve crystals with lager sizes (e.g., more than 3 μm) with no generation of parasitic crystals. Furthermore, the present invention shows excellent applicability to large substrates, enabling the mass production of substrate-molecular sieve composites.
摘要:
A dual crucible for silicon melting and a manufacturing apparatus of a silicon thin film including the same are disclosed. The dual crucible for the silicon melting includes a graphite crucible formed in a container shape with an open top and a bottom having an outlet part formed therein to exhaust silicon melt, the graphite crucible comprising a slope part configured to connect the outlet part and an inner wall with each other, with a predetermined slope with respect to a top surface of the outlet part, and a quartz crucible insertedly coupled to the graphite crucible, with being formed in a corresponding shape to the graphite crucible, the quartz crucible having a silicon base material charged therein.
摘要:
A top nozzle is provided. The top nozzle can include a coupling plate, a perimeter wall and a hold-down spring unit. The coupling plate can be coupled to a guide thimble of the nuclear fuel assembly. The perimeter wall can protrude upwards from the perimeter of the coupling plate. A spring clamp can be provided on the upper surface of the perimeter wall. The hold-down spring unit can be mounted to the upper surface of the perimeter wall in such a way to couple a corresponding end of the hold-down spring unit to the spring clamp. A fastening pin hole can be vertically formed through an upper surface of the spring clamp. A spring insert hole into which the hold-down spring unit can be inserted and formed by electro-discharge machining in an insert direction of the hold-down spring.
摘要:
A guide thimble plug for a nuclear fuel assembly is provided, in which an internal threaded hole is formed through a main body so that the main body is coupled to a bottom nozzle by a screw coupling. An upper insert part is formed in the upper end of the main body. The upper insert part is inserted into a shock absorption tube. A thermal deformation prevention part is formed on the main body below the upper insert part and is recessed inward from the outer surface of the main body such that, when the main body is coupled to the guide thimble, a gap is defined between the thermal deformation prevention part and the guide thimble. The guide thimble and the shock absorption tube can be reliably fastened to the bottom nozzle, and thermal deformation of the guide thimble can be minimized.
摘要:
A hold-down spring unit for a top nozzle of a nuclear fuel assembly. The hold-down spring unit is coupled to the upper end of the top nozzle of the nuclear fuel assembly. The hold-down spring unit includes a first spring which provides a hold-down force upon the nuclear fuel assembly under start-up conditions or hot full power conditions of a nuclear reactor, and a second spring which provides an additional hold-down force upon the nuclear fuel assembly under start-up conditions of the nuclear reactor. The hold-down margin under start-up conditions or hot full power conditions is reduced, thus enhancing the mechanical and structural stability of the nuclear fuel assembly.
摘要:
The present disclosure provides a graphite crucible induction-based silicon melting. The graphite crucible comprises a cylindrical body having a plurality of slits which is formed through an outer wall and an inner wall of the cylindrical body and a bottom part connected with an edge of the cylindrical body to seal an end of the cylindrical body.