Abstract:
A display device includes: a plurality of pixels; a data driver connected to the plurality of pixels by a plurality of data lines and applying data signals to the plurality of pixels; a scan driver connected to the plurality of pixels by a plurality of scan lines and applying scan signals to the plurality of pixels for the data signals to be applied to the plurality of pixels; a boost driver connected to the plurality of pixels by a plurality of boost lines and applying boost signals, boosting the pixel voltage charged to the plurality of pixels by the data signals, to the plurality of pixels; and a boost voltage maintaining unit applying a restoring voltage restoring the voltage in the plurality of boost lines by the scan signal to the plurality of boost lines. The voltage generated in the boost line by the coupling may be quickly restored and the crosstalk may be minimized, thereby improving the image quality.
Abstract:
A latency control circuit includes a delay unit configured to delay an input signal for a delay corresponding to a phase difference between an external clock and an internal clock and generate a delayed input signal, a delay information generation unit configured to generate a delay information based on a latency information and a delay amount of the input signal caused by a chip including the latency control circuit, a shift unit configured to shift the delayed input signal for a time period corresponding to the delay information in synchronism with the internal clock and an asynchronous control unit configured to selectively control the shift unit to output the delayed input signal without performing a shift operation.
Abstract:
A semiconductor memory device capable of measuring a temperature without the influence of noise includes a temperature sensing device for sensing a current temperature in response to a control signal, wherein the semiconductor memory device enters a power save mode for a predetermined time starting from an activation of the control signal and wherein the power save mode has substantially no power consumption. A method for driving a semiconductor memory device in accordance with the present invention includes sensing a current temperature in response to a control signal and entering a power save mode for a predetermined time starting from an activation of the control signal, wherein the power save mode has substantially no power consumption.
Abstract:
An active level shift (ALS) driver circuit and a liquid crystal display apparatus including the ALS driver circuit are disclosed. The ALS driver circuit includes an input unit configured to apply a first polarity voltage to a first node and to apply a second polarity voltage to a second node, a level compensation unit configured to adjust the voltages of the first node and the second node, and an output unit configured to alternately output a first power voltage and a second power voltage according to the adjusted voltages of the first and second nodes.
Abstract:
Circuit and method for recovering clock data in highly integrated semiconductor memory apparatus includes a plurality of signal receiving units configured to receive signals through a plurality of input/output pads and transfer the signals according to a receiving reference clock, the signal receiving units being divided into groups, a plurality of phase detection units configured to detect phases of signals output from the groups of the signal receiving units, a plurality of phase detection control units configured to control the phase detection units so that the phase detection units sequentially detect the phases of the signals output from each of the groups of the signal receiving units and a notification unit configured to output signals output from the phase detection units.
Abstract:
A delay line includes a delay amount adjusting unit configured to adjust a delay amount of an input signal in response to a first delay control code, and a delay unit configured to determine a number of first delay blocks having a delay amount with a first variation width and a number of second delay blocks having a delay amount with a second variation width in response to a second delay control code, wherein the delay amount with the first variation width and the delay amount with the second variation width are determined by the delay amount adjusting unit and the first and second variation widths correspond to a level change of a power supply.
Abstract:
A semiconductor memory device includes a code channel for outputting a plurality of code signals based on a code control signal inputted from an external source; a termination resistor decoder for decoding a chip selection signal, an on die termination (ODT) control signal and the plurality of code signals and outputting a plurality of selection signals based on decoded signals; and an ODT block for providing an output data pad with impedance of a termination resistor which is selected in response to the plurality of selection signals.
Abstract:
Circuit and method for recovering clock data in highly integrated semiconductor memory apparatus includes a plurality of signal receiving units configured to receive signals through a plurality of input/output pads and transfer the signals according to a receiving reference clock, the signal receiving units being divided into groups, a plurality of phase detection units configured to detect phases of signals output from the groups of the signal receiving units, a plurality of phase detection control units configured to control the phase detection units so that the phase detection units sequentially detect the phases of the signals output from each of the groups of the signal receiving units and a notification unit configured to output signals output from the phase detection units.
Abstract:
A display panel includes gate lines formed on a substrate, storage electrode lines formed on the substrate and being parallel to the gate lines, data lines insulated from the gate lines and crossing the gate lines, a plurality of thin film transistors (TFTs) connected with the gate lines and the data lines, and pixel electrodes having a first sub-electrode connected with a TFT and a second sub-electrode formed at a side opposite the first sub-electrode with respect to a gate line, wherein the TFT and a storage electrode line are disposed between the first and second sub-electrodes.
Abstract:
A duty correction circuit includes a duty ratio sensor for controlling a duty ratio sensing speed by a sensing speed control signal and outputting a correction signal by sensing a duty ratio of a clock, and a duty ratio corrector for controlling the duty ratio of the clock in response to the correction signal.