Abstract:
An apparatus includes a compressor, a first heat exchanger, a reheater, a first valve, a second heat exchanger, a four-way valve, a cap tube, and a blower. The compressor compresses a refrigerant. The blower moves air proximate the second heat exchanger to the reheater. During a cooling mode of operation, the four-way valve is configured to direct refrigerant from the first heat exchanger to the compressor; the compressor compresses the refrigerant received from the first heat exchanger; and the cap tube is configured to allow refrigerant to bypass the reheater.
Abstract:
An HVAC system includes an outdoor heat exchanger. A first indoor heat exchanger is fluidly coupled to the outdoor heat exchanger and disposed in a first zone. A second indoor heat exchanger is fluidly coupled to the outdoor heat exchanger and disposed in a second zone. A compressor is fluidly coupled to the outdoor heat exchanger, the first indoor heat exchanger, and the second indoor heat exchanger. A first circulation fan is positioned to circulate air around the first indoor heat exchanger and a second circulation fan is positioned to circulate air around the second indoor heat exchanger. A first zone controller is electrically coupled to the first indoor heat exchanger. The first zone controller is configured to measure a temperature in the first zone, compare the measured temperature to a setpoint temperature of the first zone, and responsive to a difference between the measured temperature and the setpoint temperature, adjust a speed of the first circulation fan independent of the speed of the second circulation fan.
Abstract:
A metering device may automatically control fluid flow through a valve. A control system may alter the automatic control of a metering device. In some implementations, a predetermined event may occur to alter the automatic control of the metering device.
Abstract:
A heating, ventilation, and air-conditioning (HVAC) system comprises a plurality of sensors, a plurality of tandem compressor assemblies that each comprise a first compressor and a second compressor, and a controller communicatively coupled to the plurality of sensors and the plurality of tandem compressor assemblies. The controller determines an increase in a cooling demand of a structure associated with the HVAC system based on data received from at least one of the plurality of sensors. Also, the controller compares an ambient temperature outside of the structure to a first threshold. In response to determining that the ambient temperature is greater than the first threshold, the controller operates the HVAC system in a first mode and in response to determining that the ambient temperature is less than the first threshold, the controller operates the HVAC system in a second mode.
Abstract:
The present invention provides a control system for managing lubricant levels in tandem compressor assemblies of a heating, ventilation, and air conditioning (HVAC) system. In transitioning from a partial load that operates a first compressor but not a second compressor of a tandem assembly to a full load that operates both the first and the second compressor, a controller of the HVAC system turns OFF both compressors of the tandem compressor assembly to allow time for lubricant levels to equalize between the first and the second compressor.
Abstract:
The present invention provides a control system for managing lubricant levels in tandem compressor assemblies of a heating, ventilation, and air conditioning (HVAC) system. In transitioning from a partial load that operates a first compressor but not a second compressor of a tandem assembly to a full load that operates both the first and the second compressor, a controller of the HVAC system turns OFF both compressors of the tandem compressor assembly to allow time for lubricant levels to equalize between the first and the second compressor.
Abstract:
In various implementations, air conditioners may include a high pressure portion and a low pressure portion. A bypass line may divert a portion of the refrigerant from the high pressure portion to the low pressure portion to reduce the pressure of at least a part of the high pressure portion. The bypass line may be opened automatically.
Abstract:
A metering device may automatically control fluid flow through a valve. A control system may alter the automatic control of a metering device. In some implementations, a predetermined event may occur to alter the automatic control of the metering device.
Abstract:
An apparatus includes a compressor, a first heat exchanger, a reheater, a first valve, a second heat exchanger, and a blower. The compressor compresses a refrigerant. The blower moves air proximate the second heat exchanger to the reheater. During a first mode of operation: the first heat exchanger removes heat from a first portion of the refrigerant from the compressor, the first valve opens such that a second portion of the refrigerant from the compressor flows to the reheater, the second heat exchanger uses the first portion of the refrigerant from the first heat exchanger and the second portion of the refrigerant from the reheater to cool air proximate the second heat exchanger, and the reheater uses the second portion of the refrigerant from the compressor to heat the air moved by the blower.
Abstract:
An apparatus includes first and second microchannel heat exchangers and first and second pipes. The first heat exchanger includes a first inlet, a second inlet, a first tube, a second tube, a first outlet, and a second outlet. Refrigerant at the first inlet is directed through the first tube to the first outlet and the first pipe. Refrigerant at the second inlet is directed through the second tube to the second outlet and the second pipe. The second heat exchanger includes a third inlet, a fourth inlet, a third tube, a fourth tube, a third outlet, and a fourth outlet. The third inlet directs refrigerant from the first pipe through the third tube towards the third outlet. The fourth inlet directs the refrigerant from the second pipe through the fourth tube towards the fourth outlet. The first pipe overlaps the second pipe between the two heat exchangers.