Abstract:
A method of preparing a positive electrode material is provided. The method includes mixing a first positive electrode active material precursor having an average particle diameter (D50) of 10 μm to 30 μm with a lithium-containing raw material and pre-sintering the mixture to obtain a first pre-sintered product, mixing a second positive electrode active material precursor having an average particle diameter (D50) different from that of the first positive electrode active material precursor with a lithium-containing raw material and pre-sintering the mixture to obtain a second pre-sintered product, disintegrating each of the first pre-sintered product and the second pre-sintered product, and mixing the disintegrated first pre-sintered product and the disintegrated second pre-sintered product and main-sintering the mixture to obtain a positive electrode material.
Abstract:
Provided are polycrystalline lithium manganese oxide particles represented by Chemical Formula 1 and a method of preparing the same: Li(1+x)Mn(2-x-y-f)AlyMfO(4-z) where M is sodium (Na), or two or more mixed elements including Na, 0≦x≦0.2, 0
Abstract:
A method of preparing a positive electrode active material is disclosed herein. In some embodiments, the method includes firing a first mixture at 400° C. to 700° C. to prepare a primary firing product, wherein the first mixture has a positive electrode active material precursor having a specific composition, a first lithium-containing source material, and optionally, an aluminum-containing source material, and firing a second mixture at a temperature above the firing temperature of the first mixture to prepare a positive electrode active material, wherein the second mixture has the primary firing product, a second lithium-containing source material, and a specific doping element M1-containing source material. The method is capable of degrading the cake strength of a primary firing product and providing a positive electrode active material having excellent quality by dividing a firing process into two steps.
Abstract:
Provided are a cathode active material including polycrystalline lithium manganese oxide and a boron-containing coating layer on a surface of the polycrystalline lithium manganese oxide, and a method preparing the same.Since the cathode active material according to an embodiment of the present invention may prevent direct contact between the polycrystalline lithium manganese oxide and an electrolyte solution by including the boron-containing coating layer on the surface of the polycrystalline lithium manganese oxide, the cathode active material may prevent side reactions between the cathode active material and the electrolyte solution. In addition, since limitations, such as the Jahn-Teller distortion and the dissolution of Mn2+, may be addressed by structurally stabilizing the polycrystalline lithium manganese oxide, tap density, life characteristics, and charge and discharge capacity characteristics of a secondary battery may be improved.
Abstract:
A positive electrode active material precursor and method of preparing the same are disclosed herein. In some embodiments, a positive electrode active material precursor includes a particle having a first region, a second region, and a third region, a composition of the particle is represented by the following Formula 1 or Formula 2:
[M1aM2bM3cM4d](OH)2 [Formula 1]
[M1aM2bM3cM4d]O·OH [Formula 2]
M1, M2, and M3 are different from each other and independently selected from the group consisting of Ni, Co, and Mn, M4 is at least one selected from the group consisting of B, Mg, Ca, Al, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta, and W, and 0
Abstract:
Provided is a method of manufacturing a positive electrode active material, which includes: (A) preparing a positive electrode active material precursor which includes a core portion including randomly aggregated primary particles and a shell portion surrounding the core portion and formed of primary particles oriented in a direction from a particle center to the outside and in which a ratio of a crystal grain size in the (100) plane to a crystal grain size in the (001) plane of the primary particles forming the shell portion is 3 or more; and (B) mixing the positive electrode active material precursor with a lithium-containing raw material and firing the mixture, wherein the lithium transition metal oxide has an average particle diameter (D50) that is 0.01% to 20% reduced as compared to an average particle diameter (D50) of the positive electrode active material precursor, in which a particle size is reduced during the manufacture of the positive electrode active material and thus particle strength and energy density are improved.
Abstract:
Provided are polycrystalline lithium manganese oxide particles represented by Chemical Formula 1 and a method of preparing the same: Li(1+x)Mn(2−x−y−f)AlyMfO(4−z) where M is any one selected from the group consisting of boron (B), cobalt (Co), vanadium (V), lanthanum (La), titanium (Ti), nickel (Ni), zirconium (Zr), yttrium (Y), and gallium (Ga), or two or more elements thereof, 0≤x≤0.2, 0
Abstract:
Provided is a cathode active material including lithium transition metal oxide particles and composite particles, wherein the composite particles include any one selected from the group consisting of yttria stabilized zirconia (YSZ), gadolinia-doped ceria (GDC), lanthanum strontium gallate magnesite (LSGM), lanthanum strontium manganite (LSM), and nickel (Ni)—YSZ, or a mixture of two or more thereof, and the cathode active material includes the composite particles having a single-phase peak when analyzed by X-ray diffraction (XRD).A cathode active material according to an embodiment of the present invention may not only minimize the reduction in capacity or output of a secondary battery, but may also further improve life characteristics.
Abstract:
Provided is a method of manufacturing a positive electrode active material, which includes: (A) preparing a positive electrode active material precursor which includes a core portion including randomly aggregated primary particles and a shell portion surrounding the core portion and formed of primary particles oriented in a direction from a particle center to the outside and in which a ratio of a crystal grain size in the (100) plane to a crystal grain size in the (001) plane of the primary particles forming the shell portion is 3 or more; and (B) mixing the positive electrode active material precursor with a lithium-containing raw material and firing the mixture, wherein the lithium transition metal oxide has an average particle diameter (D50) that is 0.01% to 20% reduced as compared to an average particle diameter (D50) of the positive electrode active material precursor.
Abstract:
Provided are a cathode active material including polycrystalline lithium manganese oxide and a boron-containing coating layer on a surface of the polycrystalline lithium manganese oxide, and a method preparing the same. Since the cathode active material according to an embodiment of the present invention may prevent direct contact between the polycrystalline lithium manganese oxide and an electrolyte solution by including the boron-containing coating layer on the surface of the polycrystalline lithium manganese oxide, the cathode active material may prevent side reactions between the cathode active material and the electrolyte solution. In addition, since limitations, such as the Jahn-Teller distortion and the dissolution of Mn2+, may be addressed by structurally stabilizing the polycrystalline lithium manganese oxide, tap density, life characteristics, and charge and discharge capacity characteristics of a secondary battery may be improved.