Abstract:
Provided are polycrystalline lithium manganese oxide particles represented by Chemical Formula 1 and a method of preparing the same: Li(1+x)Mn(2-x-y-f)AlyMfO(4-z) where M is sodium (Na), or two or more mixed elements including Na, 0≦x≦0.2, 0
Abstract:
Provided are a manufacturing method of a positive electrode active material for a lithium secondary battery including: a first step of dry-mixing a transition metal hydroxide and an anhydrous lithium raw material; a second step of subjecting the mixture of the transition metal hydroxide and the anhydrous lithium raw material to primarily firing; and a third step of finely pulverizing and mixing the primarily fired material and performing secondary firing, and thus obtaining a lithium transition metal oxide, wherein, in the first step, the anhydrous lithium raw material is mixed at 40 parts by weight or less based on 100 parts by weight of the transition metal hydroxide, and a positive electrode for a lithium secondary battery including a positive electrode active material manufactured by the above-described manufacturing method, and a lithium secondary battery.
Abstract:
A method of preparing a positive electrode active material is disclosed herein. In some embodiments, the method includes firing a first mixture at 400° C. to 700° C. to prepare a primary firing product, wherein the first mixture has a positive electrode active material precursor having a specific composition, a first lithium-containing source material, and optionally, an aluminum-containing source material, and firing a second mixture at a temperature above the firing temperature of the first mixture to prepare a positive electrode active material, wherein the second mixture has the primary firing product, a second lithium-containing source material, and a specific doping element M1-containing source material. The method is capable of degrading the cake strength of a primary firing product and providing a positive electrode active material having excellent quality by dividing a firing process into two steps.
Abstract:
Provided are a cathode active material including polycrystalline lithium manganese oxide and a boron-containing coating layer on a surface of the polycrystalline lithium manganese oxide, and a method preparing the same.Since the cathode active material according to an embodiment of the present invention may prevent direct contact between the polycrystalline lithium manganese oxide and an electrolyte solution by including the boron-containing coating layer on the surface of the polycrystalline lithium manganese oxide, the cathode active material may prevent side reactions between the cathode active material and the electrolyte solution. In addition, since limitations, such as the Jahn-Teller distortion and the dissolution of Mn2+, may be addressed by structurally stabilizing the polycrystalline lithium manganese oxide, tap density, life characteristics, and charge and discharge capacity characteristics of a secondary battery may be improved.
Abstract:
Provided are a manufacturing method of a positive electrode active material for a lithium secondary battery including: a first step of dry-mixing a transition metal hydroxide and an anhydrous lithium raw material; a second step of subjecting the mixture of the transition metal hydroxide and the anhydrous lithium raw material to primarily firing; and a third step of finely pulverizing and mixing the primarily fired material and performing secondary firing, and thus obtaining a lithium transition metal oxide, wherein, in the first step, the anhydrous lithium raw material is mixed at 40 parts by weight or less based on 100 parts by weight of the transition metal hydroxide, and a positive electrode for a lithium secondary battery including a positive electrode active material manufactured by the above-described manufacturing method, and a lithium secondary battery.
Abstract:
The present invention relates to a method of preparing a positive electrode material for a lithium secondary battery including a first step of synthesizing a lithium transition metal oxide represented by Chemical Formula 1, a second step of preparing lithium transition metal oxide powder by grinding the lithium transition metal oxide, a third step of preparing a positive electrode material including an alumina coating layer by mixing as well as dispersing the lithium transition metal oxide powder in an alumina nanosol, and a fourth step of drying the positive electrode material, a positive electrode material for a lithium secondary battery prepared by the above method, and a lithium secondary battery including the positive electrode material, Li(1+a)(Ni(1−a−b−c)MnbCoc)On [Chemical Formula 1] where 0≤a≤0.1, 0≤b≤1, 0
Abstract:
Provided are a cathode active material including polycrystalline lithium manganese oxide and a boron-containing coating layer on a surface of the polycrystalline lithium manganese oxide, and a method preparing the same. Since the cathode active material according to an embodiment of the present invention may prevent direct contact between the polycrystalline lithium manganese oxide and an electrolyte solution by including the boron-containing coating layer on the surface of the polycrystalline lithium manganese oxide, the cathode active material may prevent side reactions between the cathode active material and the electrolyte solution. In addition, since limitations, such as the Jahn-Teller distortion and the dissolution of Mn2+, may be addressed by structurally stabilizing the polycrystalline lithium manganese oxide, tap density, life characteristics, and charge and discharge capacity characteristics of a secondary battery may be improved.
Abstract:
Provided are polycrystalline lithium manganese oxide particles represented by Chemical Formula 1 and a method of preparing the same: Li(1+x)Mn(2−x−y−f)AlyMfO(4−z) where M is any one selected from the group consisting of boron (B), cobalt (Co), vanadium (V), lanthanum (La), titanium (Ti), nickel (Ni), zirconium (Zr), yttrium (Y), and gallium (Ga), or two or more elements thereof, 0≦x≦0.2, 0
Abstract:
Provided are a cathode active material including polycrystalline lithium manganese oxide and a sodium-containing coating layer on a surface of the polycrystalline lithium manganese oxide, and a method preparing the same.Since the cathode active material according to an embodiment of the present invention may prevent direct contact between the polycrystalline lithium manganese oxide and an electrolyte solution by including the sodium-containing coating layer on the surface of the polycrystalline lithium manganese oxide, the cathode active material may prevent side reactions between the cathode active material and the electrolyte solution. In addition, since limitations, such as the Jahn-Teller distortion and the dissolution of Mn2+, may be addressed by structurally stabilizing the polycrystalline lithium manganese oxide, tap density, life characteristics, and charge and discharge capacity characteristics of a secondary battery may be improved.
Abstract:
A method of preparing a positive electrode active material is disclosed herein. In some embodiments, the method includes firing a first mixture at 400° C. to 700° C. to prepare a primary firing product, wherein the first mixture has a positive electrode active material precursor having a specific composition, a first lithium-containing source material, and optionally, an aluminum-containing source material, and firing a second mixture at a temperature above the firing temperature of the first mixture to prepare a positive electrode active material, wherein the second mixture has the primary firing product, a second lithium-containing source material, and a specific doping element M1-containing source material. The method is capable of degrading the cake strength of a primary firing product and providing a positive electrode active material having excellent quality by dividing a firing process into two steps.