Abstract:
An organic light-emitting diode display includes an auxiliary connection line on a substrate; an auxiliary cathode on and connected to the auxiliary connection line; a passivation layer covering the auxiliary cathode; an overcoat layer on the passivation layer; a connection terminal connected to the auxiliary cathode on the overcoat layer; an undercut opening on the overcoat layer exposing a portion of the auxiliary cathode, an under area being in the undercut opening and under one side of the connection terminal; a bank having a size larger than the undercut opening and exposing the entire undercut opening; an organic emission layer on a region other than the under area in the undercut opening exposing the portion of the auxiliary cathode; and a cathode directly connected to the exposed portion of the auxiliary cathode on which the organic emission layer is not formed in the under area of the undercut opening.
Abstract:
An organic light-emitting diode display includes an auxiliary connection line on a substrate; an auxiliary cathode on and connected to the auxiliary connection line; a passivation layer covering the auxiliary cathode; an overcoat layer on the passivation layer; a connection terminal connected to the auxiliary cathode on the overcoat layer; an undercut opening on the overcoat layer exposing a portion of the auxiliary cathode, an under area being in the undercut opening and under one side of the connection terminal; a bank having a size larger than the undercut opening and exposing the entire undercut opening; an organic emission layer on a region other than the under area in the undercut opening exposing the portion of the auxiliary cathode; and a cathode directly connected to the exposed portion of the auxiliary cathode on which the organic emission layer is not formed in the under area of the undercut opening.
Abstract:
A method for manufacturing a thin film transistor substrate, the method can include a first mask process for forming a gate electrode on a substrate; a step for forming a gate insulating layer covering the gate electrode; a second mask process for forming a source electrode overlapping with one side of the gate electrode, and a drain electrode overlapping with other side of the gate electrode and being apart from the source electrode, on the gate insulating layer; and a third mask process for forming an oxide semiconductor layer extending from the source electrode to the drain electrode, and an etch stopper having the same shape and size with the oxide semiconductor layer on the oxide semiconductor layer.
Abstract:
An organic light emitting display device has a display panel including a first subpixel, a second subpixel, a data line, and sensing lines. The sensing lines may include a vertical sensing line and a horizontal sensing line connected to the vertical sensing line. The horizontal sensing line may be formed of a source/drain metal layer present on the first substrate, and one portion thereof connected to a first electrode of a sensing transistor of the first subpixel and the other portion thereof connected to a first electrode of a sensing transistor of the second subpixel may be positioned in a region intersecting with the data line, and electrically connected by a connection electrode formed of an insulated light blocking layer below the source/drain metal layer present on the first substrate.
Abstract:
The present disclosure relates to a thin film transistor substrate having a metal oxide semiconductor for flat panel displays and a method for manufacturing the same. The present disclosure suggests a thin film transistor substrate including: a gate electrode on a substrate; a gate insulating layer covering the gate electrode; a source electrode overlapping with one side of the gate electrode on the gate insulating layer; a drain electrode being apart from the source electrode and overlapping with other side of the gate electrode on the gate insulating layer; an oxide semiconductor layer contacting an upper surface of the source electrode and the drain electrode, and extending from the source electrode to the drain electrode; and an etch stopper having the same shape with the oxide semiconductor layer, and contacting an upper surface of the oxide semiconductor layer.
Abstract:
An organic light-emitting diode display includes an auxiliary connection line on a substrate; an auxiliary cathode on and connected to the auxiliary connection line; a passivation layer covering the auxiliary cathode; an overcoat layer on the passivation layer; a connection terminal connected to the auxiliary cathode on the overcoat layer; an undercut opening on the overcoat layer exposing a portion of the auxiliary cathode, an under area being in the undercut opening and under one side of the connection terminal; a bank having a size larger than the undercut opening and exposing the entire undercut opening; an organic emission layer on a region other than the under area in the undercut opening exposing the portion of the auxiliary cathode; and a cathode directly connected to the exposed portion of the auxiliary cathode on which the organic emission layer is not formed in the under area of the undercut opening.
Abstract:
An organic light emitting display device has a display panel including a first subpixel, a second subpixel, a data line, and sensing lines. The sensing lines may include a vertical sensing line and a horizontal sensing line connected to the vertical sensing line. The horizontal sensing line may be formed of a source/drain metal layer present on the first substrate, and one portion thereof connected to a first electrode of a sensing transistor of the first subpixel and the other portion thereof connected to a first electrode of a sensing transistor of the second subpixel may be positioned in a region intersecting with the data line, and electrically connected by a connection electrode formed of an insulated light blocking layer below the source/drain metal layer present on the first substrate.