Abstract:
A gate driving circuit and a display device including the same are disclosed. The gate driving circuit includes signal transmitters receiving a start pulse, a shift clock, a charge/discharge clock, a back-bias clock, a high-potential driving voltage, and a low-potential reference voltage, and connected in a cascade structure. An Nth (N is a positive integer) signal transmitter of the signal transmitters includes a first control node; a second control node; a first controller controlling charging and discharging of the first control node by using at least one transistor to which the back-bias clock is inputted; a second controller controlling charging and discharging of the second control node; a first output buffer outputting a carry pulse in response to voltages of the first and second control nodes; and a second output buffer outputting a gate pulse.
Abstract:
A pixel circuit and a display device including the same are disclosed. The pixel circuit includes: a driving element including electrodes respectively connected to a first node to receive a first constant voltage, a second node, and a third node; a light emitting element including an anode connected to a fourth node and a cathode to receive a second constant voltage; a first switch to provide a data voltage to the second node; a second switch to provide a third constant voltage to the second node; a third switch to provide a fourth constant voltage to the fourth node; a fourth switch to provide the first constant voltage to the first node; a fifth switch to electrically connect the third node to the fourth node.
Abstract:
A pixel circuit and a display device including the same are disclosed. The pixel circuit includes a driving element including a first electrode connected to a first node, a first gate electrode connected to a second node, a second electrode connected to a third node, and a second gate electrode to which a preset voltage is applied; a light emitting element including an anode electrode connected to a fourth node and a cathode electrode to which a low-potential power supply voltage is applied; a first switch element connected between the first node and the second node; a second switch element connected between the third node and the fourth node; a first capacitor connected to the first gate electrode of the driving element; and a second capacitor connected to the third node.
Abstract:
Disclosed are an LCD device and a method of manufacturing the same, in which a passivation layer and a pixel electrode are simultaneously formed by a single mask process using a half tone mask, and thus, manufacturing efficiency increases, and a defective contact due to loss of the pixel electrode can be prevented in a pad area. The LCD device includes a pad part including a pad area and a contact area. The LCD device includes a pixel pad formed in the pad area, a pixel bar formed in the contact area, and a bridge layer contacting the pixel pad with the pixel bar. The bridge layer is formed as a single layer or multi layers, and formed of one or more of a transparent conductive material and an opaque conductive material.
Abstract:
Disclosed are an LCD device and a method of manufacturing the same, in which a passivation layer and a pixel electrode are simultaneously formed by a single mask process using a half tone mask, and thus, manufacturing efficiency increases, and a defective contact due to loss of the pixel electrode can be prevented in a pad area. The LCD device includes a pad part including a pad area and a contact area. The LCD device includes a pixel pad formed in the pad area, a pixel bar formed in the contact area, and a bridge layer contacting the pixel pad with the pixel bar. The bridge layer is formed as a single layer or multi layers, and formed of one or more of a transparent conductive material and an opaque conductive material.
Abstract:
A pixel circuit and a display device including the same are disclosed. The pixel circuit includes: a driving element including electrodes respectively connected to a first node to receive a first constant voltage, a second node, and a third node; a light emitting element including an anode connected to a fourth node and a cathode to receive a second constant voltage; a first switch to provide a data voltage to the second node; a second switch to provide a third constant voltage to the second node; a third switch to provide a fourth constant voltage to the fourth node; a fourth switch to provide the first constant voltage to the first node; a fifth switch to electrically connect the third node to the fourth node.
Abstract:
Disclosed are an LCD device and a method of manufacturing the same, in which a passivation layer and a pixel electrode are simultaneously formed by a single mask process using a half tone mask, and thus, manufacturing efficiency increases, and a defective contact due to loss of the pixel electrode can be prevented in a pad area. The LCD device includes a pad part including a pad area and a contact area. The LCD device includes a pixel pad formed in the pad area, a pixel bar formed in the contact area, and a bridge layer contacting the pixel pad with the pixel bar. The bridge layer is formed as a single layer or multi layers, and formed of one or more of a transparent conductive material and an opaque conductive material.
Abstract:
A pixel circuit, a method for driving a pixel circuit and a display device. The pixel circuit includes a driving element including a first electrode connected to a first node, a first gate electrode connected to a second node, a second electrode connected to a third node, and a second gate electrode to which a preset voltage is applied; a light emitting element including an anode electrode connected to a fourth node and a cathode electrode to which a low-potential power supply voltage is applied, the light emitting element being driven according to a current from the driving element; a first switch element connected between the first node and the second node; and a second switch element connected between the third node and the fourth node.
Abstract:
Disclosed are an LCD device and a method of manufacturing the same, in which a passivation layer and a pixel electrode are simultaneously formed by a single mask process using a half tone mask, and thus, manufacturing efficiency increases, and a defective contact due to loss of the pixel electrode can be prevented in a pad area. The LCD device includes a pad part including a pad area and a contact area. The LCD device includes a pixel pad formed in the pad area, a pixel bar formed in the contact area, and a bridge layer contacting the pixel pad with the pixel bar. The bridge layer is formed as a single layer or multi layers, and formed of one or more of a transparent conductive material and an opaque conductive material.