Abstract:
Disclosed is an organic light emitting display device and a method of driving the same that can improve compensation performance of degradation of a driving TFT. A method of driving an organic light emitting display device comprises generating an estimated degradation value of a driving TFT by using accumulated data through input data counting; compensating all the pixels of a display panel by using a first gain value, which is initially set, and the estimated degradation value; generating a sensing value by sensing all or some of the pixels of the display panel after driving is performed for a certain time; generating a second gain value by compensating the first gain value if an error between the estimated degradation value and the sensing value is more than a reference value; generating compensation data by compensating the estimated degradation value by using the second gain value; and compensating all the pixels of the display panel by using the compensation data.
Abstract:
Disclosed is an organic light emitting display device and a method of driving the same that can improve compensation performance of degradation of a driving TFT. A method of driving an organic light emitting display device comprises generating an estimated degradation value of a driving TFT by using accumulated data through input data counting; compensating all the pixels of a display panel by using a first gain value, which is initially set, and the estimated degradation value; generating a sensing value by sensing all or some of the pixels of the display panel after driving is performed for a certain time; generating a second gain value by compensating the first gain value if an error between the estimated degradation value and the sensing value is more than a reference value; generating compensation data by compensating the estimated degradation value by using the second gain value; and compensating all the pixels of the display panel by using the compensation data.
Abstract:
A backlight assembly is disclosed that is capable of enabling easy narrow bezel design and easily radiating heat generated from a light source, and a liquid crystal display device using the same. The backlight assembly includes a bottom cover, a light guide plate placed on the bottom cover, a printed circuit board having an L-shaped form and attached to a bottom surface and inner lateral surface of the bottom cover, and a plurality of Light Emitting Diode (LED) packages being mounted to the printed circuit board, wherein the printed circuit board includes a single metal layer having the L-shaped form and attached to the bottom surface and the inner lateral surface of the bottom cover; and a Resin Coated Copper (RCC) film attached to an inner lateral surface of the single metal layer.
Abstract:
A backlight assembly is disclosed that is capable of enabling easy narrow bezel design and easily radiating heat generated from a light source, and a liquid crystal display device using the same. The backlight assembly includes a bottom cover, a light guide plate placed on the bottom cover, a printed circuit board having an L-shaped form and attached to a bottom surface and inner lateral surface of the bottom cover, and a plurality of Light Emitting Diode (LED) packages being mounted to the printed circuit board, wherein the printed circuit board includes a single metal layer having the L-shaped form and attached to the bottom surface and the inner lateral surface of the bottom cover; and a Resin Coated Copper (RCC) film attached to an inner lateral surface of the single metal layer.
Abstract:
A signal driving circuit of a liquid crystal display device includes a column driver for converting video data input into analog signals and applying said analog signals to pixels of a liquid crystal panel, a gamma voltage circuit for applying a plurality of signal voltages to the column driver and an external voltage supplying unit for generating and adjusting signal voltages and a common voltage applied to the gamma voltage circuit and the common electrode, respectively.