Abstract:
Provided are a thin film transistor (TFT) substrate and a display using the same. A TFT substrate includes: a substrate, a first TFT on the substrate, including: a polycrystalline semiconductor layer, a first gate electrode thereover, a first source electrode, and a first drain electrode, a second TFT on the substrate, including: a second gate electrode, an oxide semiconductor layer on the second gate electrode, a second source electrode, and a second drain electrode, an intermediate insulating layer including a nitride layer, on the first gate electrode, and an oxide layer covering the second gate electrode, on the intermediate insulating layer, on the oxide layer, and overlapping the second gate electrode, wherein the first source, first drain, and second gate electrodes are between the intermediate insulating layer and the oxide layer, and wherein the second source and the second drain electrodes are on the oxide semiconductor layer.
Abstract:
A disclosed liquid crystal display includes a substrate with a gate electrode, a gate insulation film, an active layer, a source electrode, a drain electrode, and a first passivation film formed on the substrate. An organic insulation film having a first contact hole and a common electrode having a second contact hole are formed on the first passivation film using a single mask. The display also includes a second passivation film on the common electrode, and a pixel electrode on the second passivation film and connected to the drain electrode via the contact hole through the second passivation film. The top surface of the organic insulation film adjacent to a side edge of the organic insulation film is uncovered by the common electrode.
Abstract:
A flat panel display having a low reflective black matrix and a method for manufacturing the same are provided. The flat panel display includes a substrate having an open area and a non-open area; a hazy layer disposed in the non-open area on the inner surface of the substrate; a black matrix stacked on the hazy layer; a driving element disposed in the non-opening area; and a display element disposed in the open area and driven by the driving element.
Abstract:
Provided are a thin film transistor (TFT) substrate and a display using the same. A display includes: a first TFT, including: a polycrystalline semiconductor layer, a first gate electrode thereover, a first source electrode, and a first drain electrode, a second TFT, including: a second gate electrode, an oxide semiconductor layer over the second gate electrode, a second source electrode, and a second drain electrode, an intermediate insulating layer including a nitride layer, on the first gate electrode, and an oxide layer covering the second gate electrode, on the intermediate insulating layer, on the oxide layer, and overlapping the second gate electrode, wherein the first source, first drain, and second gate electrodes are between the intermediate insulating layer and the oxide layer, and wherein the second source and the second drain electrodes are on the oxide semiconductor layer.
Abstract:
Provided are a thin film transistor (TFT) substrate and a display using the same. A TFT substrate includes: a substrate, a first TFT on the substrate, including: a polycrystalline semiconductor layer, a first gate electrode thereover, a first source electrode, and a first drain electrode, a second TFT on the substrate, including: a second gate electrode, an oxide semiconductor layer on the second gate electrode, a second source electrode, and a second drain electrode, an intermediate insulating layer including a nitride layer, on the first gate electrode, and an oxide layer covering the second gate electrode, on the intermediate insulating layer, on the oxide layer, and overlapping the second gate electrode, wherein the first source, first drain, and second gate electrodes are between the intermediate insulating layer and the oxide layer, and wherein the second source and the second drain electrodes are on the oxide semiconductor layer.