Abstract:
A display device includes a driving transistor, an organic light emitting diode (OLED), a first switch, and a second switch. The driving transistor has a first terminal (e.g., a drain terminal) and a second terminal (e.g., a source terminal). The OLED includes a first terminal coupled to the second terminal of the driving transistor. The first switch is configured to couple the first terminal of the driving transistor to a first voltage (e.g., VDD) to turn on the OLED, and to couple the first terminal to an intermediate voltage to turn off the OLED. The second switch is configured to couple a second electrode of the OLED to a second voltage (e.g., VSS) to turn on the OLED, and to couple the second electrode of the OLED to the intermediate voltage to turn off the OLED. The intermediate voltage is in between the first voltage and the second voltage.
Abstract:
Provided is a display device. The display device includes a base layer including an active area partitioned to display images and an inactive area adjacent to the active area, an opening located in a part of the active area and passing through the base layer and functional layers thereabove, and a cut structure located in the vicinity of the opening and provided to cut the connection of an organic light emitting layer between the opening and a light emitting unit. A camera may be provided in a position corresponding to the opening.
Abstract:
An in-cell touch liquid crystal display device and a method for manufacturing the same are disclosed in which color mixing among pixels can be prevented. The in-cell touch liquid crystal display device includes a thin film transistor (TFT) arranged in a plurality of pixel areas; a source contact layer connected to a source electrode of the TFT and a drain contact layer connected to a drain electrode of the TFT; first and second passivation layers on the source contact layer and the drain contact layer; a common electrode on the second passivation layer; a third passivation layer on the common electrode; a conductive line to overlap the common electrode by passing through the third passivation layer; a fourth passivation layer on the third passivation layer and the conductive line; and a pixel electrode on the fourth passivation layer connected to the drain contact layer in a first contact hole.
Abstract:
Provided is a display device. The display device includes a base layer including an active area partitioned to display images and an inactive area adjacent to the active area, an opening located in a part of the active area and passing through the base layer and functional layers thereabove, and a cut structure located in the vicinity of the opening and provided to cut the connection of an organic light emitting layer between the opening and a light emitting unit. A camera may be provided in a position corresponding to the opening.
Abstract:
Provided is a display device. The display device includes a base layer including an active area partitioned to display images and an inactive area adjacent to the active area, an opening located in a part of the active area and passing through the base layer and functional layers thereabove, and a cut structure located in the vicinity of the opening and provided to cut the connection of an organic light emitting layer between the opening and a light emitting unit. A camera may be provided in a position corresponding to the opening.
Abstract:
An in-cell touch liquid crystal display device and a method for manufacturing the same are disclosed in which color mixing among pixels can be prevented. The in-cell touch liquid crystal display device includes a thin film transistor (TFT) arranged in a plurality of pixel areas; a source contact layer connected to a source electrode of the TFT and a drain contact layer connected to a drain electrode of the TFT; first and second passivation layers on the source contact layer and the drain contact layer; a common electrode on the second passivation layer; a third passivation layer on the common electrode; a conductive line to overlap the common electrode by passing through the third passivation layer; a fourth passivation layer on the third passivation layer and the conductive line; and a pixel electrode on the fourth passivation layer connected to the drain contact layer in a first contact hole.