Abstract:
The present disclosure relates to a laundry treatment machine and a method for controlling the same. A pump motor may operate according to the steps of starting up the pump motor when operating or stopping the pump motor. Upon restarting, the pump motor may be controlled to start up after being on standby until the rotor stops, and therefore the pump may run normally even in case in which the pump repeatedly stops and runs, and the drainage performance may be improved and wash water may be drained by the operation of the pump regardless of the lift level.
Abstract:
The present disclosure relates to a laundry treatment machine. A pump motor provided in a drain pump is controlled to correspond to the operation of the main motor and the water level, so that the pump motor slows down based on the speed of rotation of the main motor and the water level and keeps operating at low speed. Therefore, the pump motor is able to keep operating without stopping operation, and the amount of noise caused by the start-up of the motor is reduced, and the time taken to align the rotor of the motor in position is reduced, thereby reducing drainage time and improving the drainage performance of the drain pump.
Abstract:
The present disclosure relates to a laundry treatment machine and a method for controlling the same. An increased amount of wash water during dewatering is introduced into a pump by decreasing the speed of a pump motor provided in the pump and increasing it again based on changes in the speed of the main motor during dewatering, and the wash water introduced while the speed of the pump motor is increasing is drained. Thus, the amount of noise generated during drainage may be reduced, drainage performance may be improved, and drainage time may be shortened.
Abstract:
A plasma lighting system includes a magnetron configured to generate microwaves, a bulb filled with a main dose and an additive dose, wherein the main dose and the additive dose generate light under the influence of microwaves and have the maximum intensities of respective intrinsic wavelengths at different wavelengths, a waveguide configured to guide the microwaves generated by the magnetron to the bulb, a motor configured to rotate the bulb, a sensor configured to sense the intensity of light having a specific wavelength emitted from the bulb, and a controller connected to the motor, wherein the controller adjusts Revolutions Per Minute (RPM) of the bulb based on the intensity of light having the specific wavelength sensed by the sensor.
Abstract:
A plasma lighting system includes a magnetron configured to generate microwaves, and a bulb filled with a main dose and an additive dose. The main dose and the additive dose generate light under the influence of microwaves and have the maximum intensities of respective intrinsic wavelengths at different wavelengths. A waveguide is configured to guide the microwaves generated by the magnetron to the bulb. A motor is configured to rotate the bulb. A sensor is configured to sense the intensity of light having a specific wavelength emitted from the bulb. A controller is connected to the motor. The controller adjusts the Revolutions Per Minute (RPM) of the bulb based on the intensity of light having the specific wavelength sensed by the sensor. With this arrangement, a Color Rendering Index (CRI) of the plasma lighting system may be adjusted during operation.
Abstract:
A plasma lighting system includes a magnetron configured to generate microwaves, and a bulb filled with a main dose and an additive dose. The main dose and the additive dose generate light under the influence of microwaves and have maximum intensities of respective intrinsic wavelengths at different wavelengths. A motor is configured to rotate the bulb. A controller is connected to the motor. The controller adjusts the Revolutions Per Minute (RPM) of the bulb to thereby adjust a color temperature of light emitted from the bulb.
Abstract:
A lighting apparatus is provided that includes a magnetron configured to generate microwaves having a predetermined frequency, a waveguide including a first wave guide space configured to introduce and guide the microwaves and a second wave guide space expanded from the first wave guide space, a resonator to which the microwaves are transmitted from the waveguide and a bulb located in the resonator, the bulb encapsulating a light emitting material and being configured to emit light in response to the transmitted microwaves. The second wave guide space is located in a transmission path of the microwaves transmitted from the magnetron to the resonator.
Abstract:
A plasma lighting system includes a magnetron configured to generate microwaves, a bulb filled with a main dose and an additive dose, wherein the main dose and the additive dose generate light under the influence of microwaves and have maximum intensities of respective intrinsic wavelengths at different wavelengths, a motor configured to rotate the bulb, and a controller connected to the motor, wherein the controller adjusts Revolutions Per Minute (RPM) of the bulb.
Abstract:
The present disclosure relates to a laundry treatment machine. A laundry treatment machine according to an embodiment of the present disclosure including an inverter to convert the DC voltage from the converter into an alternating current (AC) voltage based on a switching operation and to output the converted AC voltage to the drain motor; and a controller to control the drain motor to operate at any one of a first speed, a second speed less than the first speed, and a stop when the washing tub motor is accelerated. Accordingly, according to the operation of the washing tub motor, it is possible to efficiently drive the drain motor.
Abstract:
A lighting apparatus having a magnetron configured to generate microwaves, a waveguide including a wave guide space configured to introduce and guide the microwaves and an aperture to discharge the microwaves, a resonator to which the microwaves are transmitted through the aperture, and a bulb located in the resonator, the bulb encapsulating a light emitting material and configured to emit light based on the transmitted microwaves is provided. The apparatus also includes a reflective member or optical member located in the resonator such that light emitted from the bulb towards the aperture is reflected away from the aperture.