Abstract:
A drinking water supply device may include a filtered water pipe, a flow rate sensor, a water supply pipe, a mineral supply pipe provided with a mineral supply valve, a mineral cartridge configured to connect to the mineral supply pipe, a mineral mixer configured to connect to the water supply pipe and the mineral supply pipe and configured to allow mixing of the minerals from the mineral supply pipe with the filtered water in the water supply pipe, a pump, a discharge pipe configured to connect to the mineral mixer and the water supply pipe, and a controller configured to control an output voltage of the pump in order to adjust an amount of minerals that are supplied to the water supply pipe based on a flow rate sensed by the flow rate sensor.
Abstract:
A filter for a water purifier includes a filter housing that defines an inlet and an outlet, and a filter module disposed inside the filter housing and configured to purify water received through the inlet and supply purified water to the outlet. The filter module includes a carbon block that includes a mixture of: activated carbon having a weight corresponding to 40 to 50% of a weight of the mixture, a binder having a weight corresponding to 5 to 15% of the weight of the mixture, iron hydroxide having a weight corresponding to 10 to 20% of the weight of the mixture, and titanium oxide having a weight corresponding to 30 to 40% of the weight of the mixture.
Abstract:
A method is described for treating activated carbon configured to be included in a carbon block of a filter for a water purifier. The method includes: inserting the activated carbon into a chamber; injecting ozone generated from an ozone generator into the chamber, and applying pressure to the chamber; and modifying a surface of the activated carbon inserted into the chamber based on applying the pressure to the chamber that holds the ozone and the activated carbon.
Abstract:
Disclosed is a filter for a water-purification device, the filter including a filter housing having a water inlet and a water outlet defined therein; and a filter member disposed in the filter housing to purify water introduced through the inlet and supply the purified water to the outlet, wherein the filter member includes a carbon block produced by mixing 40 to 50% by weight of titanium oxide, 30 to 40% by weight of activated carbon, and 18 to 23% by weight of binder with each other. Further, a water-purification device including the filter is disclosed.
Abstract:
The present invention relates to a water purifier filter, and a water purifier including the same. The water purifier filter and the water purifier including the same according to the present invention include a filter housing including an inlet and an outlet, and a filter module provided in the filter housing to purify water introduced through the inlet and to supply the water to the outlet, and a material of the filter module includes sodium orthotitanate (Na4TiO4) to remove a heavy metal under water, thereby effectively removing a heavy metal including cadmium under water.
Abstract:
A drinking water supply device may include a first channel configured to channel water, a water discharge pipe coupled to the rear end of the first channel configured to discharge the drinking water, a first connection pipe connecting the first channel and the water discharge pipe, a second channel configured to supply minerals to the first connection pipe, the second channel provided with a pressure sensor and a mineral supply valve, a mineral container configured to communicate with the first connection pipe via the second channel and configured to store condensed minerals, a pump configured to pressurize the interior of the mineral container to discharge the condensed minerals out of the mineral container, and a controller configured to control the mineral supply valve to open for a first predetermined time and then close according to a water discharge signal.
Abstract:
A drinking water supply device may include a first channel configured to channel water, the first channel provided with a first valve, a flow rate sensor configured to sense a flow rate of the water, a water discharge channel connected to the rear end of the first channel, a connection pipe connecting the first channel and the water discharge channel, a second channel configured to supply minerals to the connection pipe, the second channel provided with a pressure sensor and a second valve, a mineral container configured to connect to the connection pipe via the second channel and configured to store condensed minerals, a pump configured to pressurize an interior of the mineral container to allow discharge of the condensed minerals from the mineral container, and a controller configured to control the flow rate sensor, the pressure sensor, and the first valve.
Abstract:
A drinking water supply device may include a first channel configured to channel water, the first channel provided with a first valve, a flow rate sensor configured to sense a flow rate of the water, a water discharge channel connected to the rear end of the first channel, a connection pipe connecting the first channel and the water discharge channel, a second channel configured to supply minerals to the connection pipe, the second channel provided with a pressure sensor and a second valve, a mineral container configured to connect to the connection pipe via the second channel and configured to store condensed minerals, a pump configured to pressurize an interior of the mineral container to allow discharge of the condensed minerals from the mineral container, and a controller configured to control the flow rate sensor, the pressure sensor, and the first valve.