Abstract:
Disclosed herein are a backlight unit and a display device using the same. In an embodiment, the backlight unit includes a substrate, at least one light source on the substrate, a lenses placed over the light source, a reflection sheet in which at least one through hole corresponding to the lens is formed, and a reflection ring comprising an opening portion corresponding to the at least one light source, and placed between the lens and the substrate. In accordance with an embodiment of the present invention, luminance uniformity of the backlight unit can be improved because the reflection ring surrounding the light source is included.
Abstract:
A light guide plate includes a light introduction surface to receive light supplied from a light source module and a light emission surface to emit the light outward, the light emission surface having a larger area than the light introduction surface. The light guide plate is of a material that transmits light and absorbs light in an absorption wavelength band. The light guide plate further includes a plurality of color patterns to convert the light supplied from the light source module into light in the absorption wavelength band.
Abstract:
A display device is provided. The display device includes: a substrate; and at least one light assembly separately located on the substrate, wherein the light assembly includes: a light source; and a lens configured to shield an upper surface and a side surface of the light source, wherein the lens includes: a refraction portion separately located on the upper surface of the light source; and a reflection portion separately located at the side surface of the light source. Thereby, the lens includes a reflection portion located at a side surface of the light source, thereby improving light efficiency of a backlight unit.
Abstract:
An optical lens and a display device including the same are provided. An optical lens includes a first surface having a circular cross-sectional shape, a second surface opposite to the first surface, and a third surface configured to connect the first surface and the second surface. The third surface includes a straight surface extending from a boundary of the first surface and a first curved surface extending from the straight surface to the second surface. The straight surface and the first curved surface extending in a path between the first surface and the second surface. The second surface includes a concave recess recessing in a direction of the first surface and the concave recess includes a second curved surface. Light that has passed through the second concave surface changes a path as the light passes through the first curved surface such that light path can be effectively controlled.
Abstract:
A display apparatus according to an embodiment of the present disclosure comprises: a substrate; a light-emitting unit including a light emitting element mounted on the substrate and a lens placed above the light-emitting element; a reflective layer placed on the upper surface of the substrate; an optical sheet placed above the reflective layer and placed at a height at which the optical sheet is spaced from the light-emitting unit; and a display panel placed on the upper surface of the optical sheet, wherein the lens has a cutout portion formed therein by depressing a part of the side surface thereof toward the center thereof, thereby providing an anisotropic light distribution.
Abstract:
Disclosed herein are a backlight unit and a display device using the same. In an embodiment, the backlight unit includes a substrate, at least one light source on the substrate, a lenses placed over the light source, a reflection sheet in which at least one through hole corresponding to the lens is formed, and a reflection ring comprising an opening portion corresponding to the at least one light source, and placed between the lens and the substrate. In accordance with an embodiment of the present invention, luminance uniformity of the backlight unit can be improved because the reflection ring surrounding the light source is included.
Abstract:
Disclosed is a display device. The display device includes a display panel, an optical assembly configured to provide blue-based light to the display panel, and a light-absorbing layer located in the path of light provided from the optical assembly to the display panel, the light-absorbing layer being configured to absorb light in a predetermined wavelength range. The light provided to the display panel through the light-absorbing layer has optical characteristics such that the intensity of green-based light is 20 to 70% of the intensity (100%) of the blue-based light and the intensity of red-based light is 20 to 70% of the intensity of the blue-based light.
Abstract:
Disclosed herein are a backlight unit and a display device using the same. In an embodiment, the backlight unit includes a substrate, at least one light source on the substrate, a lenses placed over the light source, a reflection sheet in which at least one through hole corresponding to the lens is formed, and a reflection ring comprising an opening portion corresponding to the at least one light source, and placed between the lens and the substrate. In accordance with an embodiment of the present invention, luminance uniformity of the backlight unit can be improved because the reflection ring surrounding the light source is included.
Abstract:
A backlight unit and a display device including the same are provided. The display device includes: a bottom cover; a backlight unit in which a light assembly is disposed in at least one corner area of the bottom cover; and a light arriving portion formed by bending at least one corner area of the bottom cover, wherein the backlight unit includes: a substrate coupled to the light arriving portion and in which a first surface in which the light assembly is disposed and a second surface bent from the first surface are provided, and at the first and second surfaces, a plurality of leads connected to the light assembly are disposed.
Abstract:
Disclosed herein are a backlight unit and a display device using the same. In an embodiment, the backlight unit includes a substrate, at least one light source on the substrate, a lenses placed over the light source, a reflection sheet in which at least one through hole corresponding to the lens is formed, and a reflection ring comprising an opening portion corresponding to the at least one light source, and placed between the lens and the substrate. In accordance with an embodiment of the present invention, luminance uniformity of the backlight unit can be improved because the reflection ring surrounding the light source is included.