COMPOSITION FOR FUEL CELL ELECTRODE
    3.
    发明申请

    公开(公告)号:US20170149067A1

    公开(公告)日:2017-05-25

    申请号:US15337890

    申请日:2016-10-28

    IPC分类号: H01M4/90 H01M4/86

    摘要: In some examples, a fuel cell comprising an anode; an electrolyte; cathode barrier layer; and a nickelate composite cathode separated from the electrolyte by the cathode barrier layer; and a cathode current collector layer. The nickelate composite cathode includes a nickelate compound and an ionic conductive material, and the nickelate compound comprises at least one of Pr2NiO4, Nd2NiO4, (PruNdv)2NiO4, (PruNdv)3Ni2O7, (PruNdv)4Ni3O10, or (PruNdvMw)2NiO4, where M is an alkaline earth metal doped on an A—site of Pr and Nd. The ionic conductive material comprises a first co-doped ceria with a general formula of (AxBy)Ce1-x-yO2, where A and B of the first co-doped ceria are rare earth metals. The cathode barrier layer comprises a second co-doped ceria with a general formula (AxBy)Ce1-x-yO2, where at least one of A or B of the second co-doped ceria is Pr or Nd.

    SECONDARY INTERCONNECT FOR FUEL CELL SYSTEMS

    公开(公告)号:US20190157707A1

    公开(公告)日:2019-05-23

    申请号:US15816937

    申请日:2017-11-17

    摘要: A fuel cell system is provided. The fuel cell system may be a segmented-in-series, solid-oxide fuel cell system. The system may comprise a fuel cell tube and a secondary interconnect. The fuel cell tube may comprise a substrate, a fuel channel, a first and second electrochemical active fuel cell, a primary interconnect, and an electrochemically inactive cell. The substrate may have a major surface. The fuel channel may be separated from the major surface by the substrate. The first and second electrochemically active fuel cells may be disposed on the major surface, and may comprise and anode, a cathode, and an electrolyte disposed between the anode and the cathode. The primary interconnect may electrically couple the anode of the first electrochemically active fuel cell to the cathode of a second electrochemically active fuel cell. The electrochemically inactive fuel cell may be disposed on the major surface and comprise a conductive layer electrically coupled to the second electrochemically active fuel cell. The secondary interconnect may be coupled to the conductive layer of the electrochemically inactive cell. The electrochemically inactive cell is configured to inhibit the migration of hydrogen from said fuel channel to the secondary interconnect.

    FUEL CELL SECONDARY INTERCONNECT
    6.
    发明申请

    公开(公告)号:US20190157704A1

    公开(公告)日:2019-05-23

    申请号:US15816918

    申请日:2017-11-17

    摘要: A fuel cell system is provided. The fuel cell system may be a segmented-in-series, solid-oxide fuel cell system. The fuel cell system may comprise a first and second fuel cell tube and a secondary interconnect. Each of the fuel cell tubes may comprise a substrate having a first and second end and a pair of generally planar opposing major surfaces extending between the ends, a plurality of fuel cells disposed on one of said major surfaces, wherein the fuel cells are electrically coupled in series, a first sheet conductor providing an electrical path from a location on one of the major surfaces to a location on the other of the major surfaces proximate the first end of the substrate, the first sheet conductor being electrically coupled to said plurality of fuel cells, and a second sheet conductor providing an electrical path from a location on one of the major surfaces to a location on the other of the major surfaces proximate the second end of said substrate, the second sheet conductor being electrically coupled to said plurality of fuel cells. The secondary interconnect may provide an electrical path between the first and second fuel cell tubes. The first fuel cell tube may be positioned with a major surface thereof being spaced from and parallel to a major surface of the second fuel cell tube, the secondary interconnect being electrically coupled to said first sheet conductor of each of said first and second fuel cell tubes.

    FUEL CELL SECONDARY INTERCONNECT
    7.
    发明申请

    公开(公告)号:US20190157702A1

    公开(公告)日:2019-05-23

    申请号:US15816931

    申请日:2017-11-17

    摘要: In accordance with some embodiments of the present disclosure, a fuel cell system is provided. The fuel cell system may comprise a plurality of stacked fuel cell tubes and a secondary interconnect. Each tube may comprise a substrate, a plurality of fuel cells, a first sheet conductor, and a second sheet conductor. The substrate may have a pair of opposing major surfaces and define a plurality of parallel channels between the major surfaces extending from a first end to a second end of said tube. The plurality of fuel cells may be disposed on one of said major surfaces, the fuel cells being electrically coupled in series to one another. The first sheet conductor may be located proximate the first end of the tube, the first sheet conductor providing an electrical path from a location on one of the major surfaces to a location on the other of the major surfaces. The second sheet conductor may be located proximate the second end of the tube, the second sheet conductor providing an electrical path from a location on one of the major surfaces to a location on the other of the major surfaces. The secondary interconnect may electrically couple the first sheet conductors on adjacent fuel cell tubes thereby electrically coupling the fuel cells disposed on one fuel cell tube to the fuel cells disposed on an adjacent fuel cell tube.

    Composition of a nickelate composite cathode for a fuel cell

    公开(公告)号:US10115974B2

    公开(公告)日:2018-10-30

    申请号:US15175928

    申请日:2016-06-07

    摘要: In some embodiments, a solid oxide fuel cell comprising an anode, an electrolyte, cathode barrier layer, a nickelate composite cathode separated from the electrolyte by the cathode barrier layer, and a cathode current collector layer is provided. The nickelate composite cathode includes a nickelate compound and second oxide material, which may be an ion conductor. The composite may further comprise a third oxide material. The composite may have the general formula (LnuM1vM2s)n+1(Ni1-tNt)nO3n+1-A1-xBxOy-CwDzCe(1-w-z)O2-δ, wherein A and B may be rare earth metals excluding ceria.