摘要:
A fuel cell to provide a higher power density. The fuel cell can be produced by 3D printing in ceramic and has an improved power density by virtue of its spiral shape. In order to better extract the energy generated by the fuel cell, an interconnector sheet can be fastened positively to fastening knobs of the fuel cell by holding eyes. In addition, the interconnector sheet can be fixed by glass solder.
摘要:
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
摘要:
A cell of the present disclosure includes a support body having a pillar shape, containing nickel, and including a gas-flow passage passing through an interior of the support body in a longitudinal direction, a first end portion including an outlet of the gas-flow passage, and a second end portion including an inlet of the gas-flow passage, a first electrode layer located upon the support body, a solid electrolyte layer located upon the first electrode layer, and a second electrode layer located upon the solid electrolyte layer. The support body has a lower metallic nickel content at the first end portion than at a central portion in the longitudinal direction. As such, the cell is capable of suppressing damage.
摘要:
Provided is a fuel cell as a fired body including a porous plate-like support substrate having a gas flow path formed therein, and a power generation element part provided on a principal surface of the support substrate, the power generation element part including at least a fuel electrode, a solid electrolyte, and an air electrode laminated in this order. The generation of cracks in the support substrate has a strong correlation with a “surface roughness of a wall surface of a gas flow” of the fuel cell in a state of a reductant. When the surface roughness of the wall surface of the gas flow path is 0.16 to 5.2 in terms of an arithmetic average roughness Ra in a state in which the fuel cell is a reductant that has been subjected to heat treatment in a reducing atmosphere, the generation of the cracks can be suppressed.
摘要:
A high-temperature polymer electrolyte membrane fuel cell stack may include a plurality of cell units; a cooling assembly including a plurality of first independent cooling plates disposed on top surfaces of the plurality of cell units, respectively, and a plurality of second independent cooling plates disposed on bottom surfaces of the plurality of cell units, respectively; and a support assembly configured to support the plurality of cell units and the cooling assembly.
摘要:
A fuel cell column includes termination plates, fuel cell stacks disposed between the termination plates, and fuel manifolds disposed between the fuel cell stacks. The fuel cell stacks include fuel cells, interconnects disposed between the fuel cells, and end plates disposed on opposing ends of the fuel cell stacks. At least one of the termination plates and/or the fuel manifold may include first and second separate pieces separated by an expansion zone. The fuel cell stack may also include one or more buffer layers and/or seals configured to reduce CTE differences of components of the fuel cell stack.
摘要:
A fuel cell stack includes seven current collecting members and six fuel cells that are alternate stacked with reference to the stacking direction. Each of the six fuel cells includes an anode, a cathode and a solid electrolyte layer that is disposed between the anode and the cathode and contains a zirconia-based material as a main component. The six fuel cells include a first fuel cell disposed in the center with reference to the stacking direction, and a second fuel cell disposed in one end with reference to the stacking direction. An intensity ratio of tetragonal crystal zirconia to cubic crystal zirconia in a Raman spectrum of the solid electrolyte layer of the first fuel cell is greater than an intensity ratio of tetragonal crystal zirconia to cubic crystal zirconia in a Raman spectrum of the solid electrolyte layer of the second fuel cell.
摘要:
The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.
摘要:
The present invention is to provide a solid oxide fuel cell capable of improving the overall energy efficiency. The present invention is directed to a solid oxide fuel cell and comprising: a fuel cell module; a fuel supply device; a combustion chamber for burning excess fuel and heating; a heat storing material, a power demand detecting sensor; a temperature detection device, and a control device for controlling so that the fuel utilization rate is high when generated power is large, and also for changing output power at a delay to the fuel supply rate; whereby the control device comprises a stored heat amount estimating circuit, and when it is estimated that a utilizable heat amount has accumulated in the heat storing material, the fuel supply rate is reduced so that the fuel utilization rate increases vs. the same generated power.
摘要:
The SOFC of the present invention has a plurality of individual solid oxide fuel cells (84) disposed within an generating chamber (10), a fuel supply unit (38) for supplying fuel to the individual solid oxide fuel cells, a temperature sensor (142) for measuring the temperature of the generating chamber (T1), and a control section (110) for changing the amount of fuel supplied in response to an amount of generation required based on control characteristics for supplying fuel, wherein the control section is furnished with a temperature band for monitoring purposes, having a minimum temperature value (Ta) and a maximum temperature value (Tb) for adaptive control, predetermined based on a minimum amount and maximum amount of rated electrical generation, and a maximum temperature value for adaptive control in response to anomalies, which is higher than the maximum temperature value (Tb) of the adaptive control temperature band, and a minimum temperature value for adaptive control in response to anomalies, which is lower than the minimum temperature value (Ta) of the adaptive control temperature band, and the control section is furnished with: an anomaly response control section for executing anomaly response control by restricting operation of the fuel cell when the generating chamber temperature (T1) is higher than the maximum temperature value for anomaly response control or lower than the minimum temperature value for anomaly response control, and with an adaptive control section for executing adaptive control by correcting the amount of fuel supplied based on a temperature signal from the temperature measurement sensor so that the generating chamber temperature (T1) is kept within the temperature band when the generating chamber temperature (T1) exceeds the minimum temperature value (Ta) or maximum temperature (Tb) for adaptive control and goes outside the temperature band.