摘要:
An optical device includes a light receiving element for detecting light reflected and transmitted from a subject; a voltage part for providing a first bias voltage or a second bias voltage to the light receiving element; and a controller for controlling the voltage part so that the second bias voltage provided from the voltage part is synchronized with a light output of a light emitting part to be provided to the light receiving element.
摘要:
A light emitting apparatus is disclosed. The light emitting apparatus includes a light source and a lens located on the light source, wherein the lens includes an upper surface, a lower surface located under the upper surface such that the lower surface is opposite to the light source, and a lateral surface connected between the upper surface and the lower surface, and wherein the lateral surface includes a plurality of segments inclined at different angles, at least one of the segments having a pattern, the pattern having root mean square (RMS) roughness including holes and rods.
摘要:
Provided are a light-receiving device and lidar comprising the light-receiving device. The light-receiving device comprises: a first lens comprising a first lens surface for receiving light from an outside and a second lens surface for changing the path of the light received by the first lens surface and outputting the light to the outside; and a sensor on which light transmitted through the second lens surface is incident, wherein the first lens surface is a spherical surface, the second lens surface is an aspherical surface, and the focus of the first lens deviates from the sensor surface of the sensor.
摘要:
The present invention relates to a member for controlling luminous flux including an incident surface receiving light, a reflective surface reflecting the incident light, and a light emitting surface emitting the reflected light to a bottom surface of a plane perpendicular to a central axis connecting a center of the incident surface and a center of the reflective surface, and to a display device and a light emitting device, whereby performance of display device can be enhanced.
摘要:
An optical array waveguide grating-type multiplexer and demultiplexer according to an embodiment of the present invention comprise: a first substrate, a plurality of first waveguides disposed on the first substrate to be superposed in the vertical direction, which is the thickness direction of the first substrate; a 1-1st cladding layer disposed between the first substrate and a 1-1st waveguide, which is nearest to the first substrate among the plurality of first waveguides; a 1-2nd cladding layer disposed between the plurality of first waveguides; and a 1-3rd cladding layer disposed on a 1-2nd waveguide, which is furthest from the first substrate among the plurality of first waveguides.
摘要:
An optical array waveguide grating-type multiplexer and demultiplexer according to an embodiment of the present invention comprise: a first substrate, a plurality of first waveguides disposed on the first substrate to be superposed in the vertical direction, which is the thickness direction of the first substrate; a 1-1st cladding layer disposed between the first substrate and a 1-1st waveguide, which is nearest to the first substrate among the plurality of first waveguides; a 1-2nd cladding layer disposed between the plurality of first waveguides; and a 1-3rd cladding layer disposed on a 1-2nd waveguide, which is furthest from the first substrate among the plurality of first waveguides.
摘要:
An embodiment relates to an automatic water supply device comprising: a container seating portion, one side of which is open such that a container is placed; a water intake member arranged on the upper portion of the container seating portion so as to supply the container with a liquid; a container height measuring unit and a water level measuring unit arranged to be adjacent to the water intake member, respectively; and a control unit for comparing the height of the container, which is measured by the container height measuring unit, and the water level, which is measuring by the water level measuring unit, thereby checking whether the water level inside the container reaches a preset height or not, and adjusting the water level inside the container using the result of the checking, wherein the container height measuring unit comprises a plurality of first optical sensors for sensing both ends of the upper end of the container, and can measure the height of the container in response to the result of sensing by the first optical sensors.
摘要:
A light emitting apparatus is disclosed. The light emitting apparatus includes a light source and a lens located on the light source, wherein the lens includes an upper surface, a lower surface located under the upper surface such that the lower surface is opposite to the light source, and a lateral surface connected between the upper surface and the lower surface, and wherein the lateral surface includes a plurality of segments inclined at different angles, at least one of the segments having a pattern, the pattern having root mean square (RMS) roughness including holes and rods.
摘要:
The luminous flux control member includes a surface of incidence, a first optical surface formed to be recessed toward the surface of incidence and configured to reflect at least some of incident light passing through the surface of incidence, and a second optical surface formed to extend from the first optical surface and configured to reflect at least some of incident light passing through the first optical surface. The second optical surface includes a plurality of sections having different slopes.
摘要:
A light emitting module is disclosed. The light emitting module includes a board, a plurality of light emitting device packages mounted on the board while being spaced apart from each other, and a plurality of lenses located at upper surfaces of the light emitting device packages in a contact fashion, wherein each of the lenses includes a curved surface expressed by a start point (SP), an end point (EP), and two adjustment points (AP1 and AP2) of a Bezier curve represented as follows. SP=(x, z), EP=(x, Z_E), AP1=(X_01, Z_01), AP2=(X_02, Z_02) where x indicates positions in a direction intersecting a light axis, z indicates positions in a direction parallel to the light axis, SP is fixed, and 0.5 mm≤Z_E≤0.78 mm, 1.62 mm≤X_01≤1.8 mm, 1.44 mm≤Z_01≤1.5 mm, 0.19 mm≤X_02≤0.25 mm, and 1.06 mm≤Z_02≤1.26 mm, or X_01 is 1.0 mm, Z_01 is 0.9 mm, X_02 is 0.2 mm, Z_02 is 0.1 mm, and Z_E is 1.2 mm.