Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module used for cooling, and the thermoelectric module can be made thin by having a first substrate and a second substrate with different surface areas to raise the heat-dissipation effectiveness.
Abstract:
Embodiments of the present invention relate to a thermoelectric module used for cooling, and provide a thermoelectric module comprising: substrates facing each other; and a first semiconductor element and a second semiconductor element arranged between the substrates and electrically connected to each other, wherein the first semiconductor element and the second semiconductor element have mutually different volumes. The present invention has a structure allowing the cooling effect to be raised by having, in a unit cell comprising thermoelectric semiconductor elements, any one from among the semiconductor elements facing each other to have a volume greater than the other to enhance the rise in electrical conductivity.
Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module used for cooling, and the thermoelectric module can be made thin by having a first substrate and a second substrate with different surface areas to raise the heat-dissipation effectiveness.
Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module used for cooling, and the thermoelectric module can be made thin by having a first substrate and a second substrate with different surface areas to raise the heat-dissipation effectiveness.
Abstract:
Provided is a thermoelectric material including metal oxide powder and thermoelectric powder. Thus, an internal filling rate is improved so that a Peltier effect can be maximized according to the increase of electrical conductivity and a Seebeck coefficient and the reduction of thermal conductivity, thereby enabling the improvement of the figure of merit (ZT) of a thermoelectric element.
Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module, and may provide a thermoelectric element and a thermoelectric module having notably improved cooling capacity (Qc) and rate of temperature change (AT) to be provided by constructing the thermoelectric element by stacking unit members, each of which comprises a semiconductor layer on a substrate, thereby lowering thermal conductivity and raising electric conductivity.
Abstract:
Provided is a heat conversion device, including: a unit thermoelectric module including a first semiconductor element and a second semiconductor element; and a heat conversion module performing heat conversion by coming into contact with the unit thermoelectric module, wherein the heat conversion module includes: a heat conversion substrate coming into direct contact with at least any one of one end and the other end of the first semiconductor element or the second semiconductor element; and a radiating unit disposed on the heat conversion substrate.