Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module used for cooling, and the thermoelectric module can be made thin by having a first substrate and a second substrate with different surface areas to raise the heat-dissipation effectiveness.
Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module used for cooling, and the thermoelectric module can be made thin by having a first substrate and a second substrate with different surface areas to raise the heat-dissipation effectiveness.
Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module used for cooling, and the thermoelectric module can be made thin by having a first substrate and a second substrate with different surface areas to raise the heat-dissipation effectiveness.
Abstract:
The embodiments of the present invention relate to a thermoelectric element and a thermoelectric module, and may provide a thermoelectric element and a thermoelectric module having notably improved cooling capacity (Qc) and rate of temperature change (AT) to be provided by constructing the thermoelectric element by stacking unit members, each of which comprises a semiconductor layer on a substrate, thereby lowering thermal conductivity and raising electric conductivity.
Abstract:
Provided is a heat conversion device, including: a unit thermoelectric module including a first semiconductor element and a second semiconductor element; and a heat conversion module performing heat conversion by coming into contact with the unit thermoelectric module, wherein the heat conversion module includes: a heat conversion substrate coming into direct contact with at least any one of one end and the other end of the first semiconductor element or the second semiconductor element; and a radiating unit disposed on the heat conversion substrate.
Abstract:
A power-generating apparatus according to an embodiment of the present invention comprises: a housing in which a fluid flows along the interior thereof and at least a portion of the wall surface thereof includes a flat surface formed of metal; a thermoelectric module disposed on the flat surface of the housing; and an insulating member disposed on the flat surface of the housing so as to be beside the thermoelectric module.
Abstract:
A thermoelectric element according to one embodiment of the present disclosure includes a first substrate, a first insulating layer disposed on the first substrate, a second insulating layer disposed on the first insulating layer, a first electrode disposed on the second insulating layer, and a semiconductor structure disposed on the first electrode, wherein the first insulating layer includes an uneven portion, a partial region of the first electrode is buried in the second insulating layer, the second insulating layer includes a concave portion which is concave in a direction toward the first insulating layer from a side surface of the first electrode, and the concave portion vertically overlaps the uneven portion.
Abstract:
A thermoelectric element according to an embodiment of the present invention comprises: a first metal substrate; a first resin layer disposed on the first metal substrate and in direct contact with the first metal substrate; a plurality of first electrodes disposed on the first resin layer; a plurality of thermoelectric legs disposed on the plurality of first electrodes; a plurality of second electrodes disposed on the plurality of thermoelectric legs; a second resin layer disposed on the plurality of second electrodes; and a second metal substrate disposed on the second resin layer, wherein the first resin layer comprises a polymeric resin and an inorganic filler and at least a part of side surfaces of the plurality of first electrodes are embedded in the first resin layer.
Abstract:
A thermoelectric element according to an embodiment of the present invention comprises: a first metallic substrate; a first resin layer which is disposed on the first metallic substrate and comes in direct contact with the first metallic substrate; a plurality of first electrodes disposed on the first resin layer; a plurality of P-type thermoelectric legs and a plurality of N-type thermoelectric legs disposed on the plurality of first electrodes; a plurality of second electrodes disposed on the plurality of P-type thermoelectric legs and the plurality of N-type thermoelectric legs; a second resin layer disposed on the plurality of second electrodes; and a second metallic substrate disposed on the second resin layer, wherein a surface of the first metallic substrate that faces the first resin layer comprises a first region and a second region disposed inside the first region, wherein a surface roughness of the second region is greater than a surface roughness of the first region, wherein the first resin layer is disposed on the second region.
Abstract:
Provided is a thermoelectric module capable of preventing the leakage of a current generated from a connection portion upon connecting a thermoelectric semiconductor element to an electrode by forming an insulating layer having a low heat conductivity on an external surface of the thermoelectric semiconductor element and improving performance of the thermoelectric element by controlling a heat transfer phenomenon from a heating part to a cooling part.