Abstract:
An inductor includes a first magnetic body having a toroidal shape and having a ferrite; and a second magnetic body configured to be different from the first magnetic body and including a metal ribbon, wherein the second magnetic body includes an outer magnetic body disposed on an outer circumferential surface of the first magnetic body and an inner magnetic body disposed on an inner circumferential surface of the first magnetic body, and each of the outer magnetic body and inner magnetic body is wound in a plurality of layers in a circumferential direction of the first magnetic body.
Abstract:
Provided are a wireless charging and communication board, and a wireless charging and communication device, the wireless charging and communication board including: a soft magnetic layer; a polymeric material layer arranged on one surface and the other surface of the soft magnetic layer and extending longer than an exposed portion of the soft magnetic layer; and a coil pattern arranged on the polymeric material layer.
Abstract:
The embodiment relates to an apparatus and a method for receiving wireless power. The apparatus for receiving the wireless power according to the embodiment includes: a coil to receive the power; and a metal member to be detected by the apparatus for transmitting wireless power, wherein the coil has an empty central region, the metal member is disposed in the empty central region of the coil, and the metal member includes a stainless steel plate.
Abstract:
Provided is an electromagnetic booster for wireless charging, comprising a magnet part having a magnetic sheet (10) and a coil part (20) disposed on the magnetic sheet, wherein the magnetic sheet is composed of a first magnetic sheet (11) member located at an edge portion and a second magnetic sheet member (12) located in a center portion on the same plane, wherein the first magnetic sheet member and the second magnetic sheet member have different permeability rates from each other.
Abstract:
An inductor includes a first magnetic body having a toroidal shape and having a ferrite; and a second magnetic body configured to be different from the first magnetic body and including a metal ribbon, wherein the second magnetic body includes an outer magnetic body disposed on an outer circumferential surface of the first magnetic body and an inner magnetic body disposed on an inner circumferential surface of the first magnetic body, and each of the outer magnetic body and inner magnetic body is wound in a plurality of layers in a circumferential direction of the first magnetic body.
Abstract:
A wireless power receiving apparatus which wirelessly charges power according to one embodiment of the present invention includes a substrate, a soft magnetic layer which is laminated on the substrate and is formed with a plurality of patterns including at least 3 lines radiated from predetermined points, and a coil which is laminated on the soft magnetic layer and receives electromagnetic energy radiated from a wireless power transmitting apparatus.
Abstract:
Provided is an electromagnetic booster for wireless charging, comprising a magnet part having a magnetic sheet (10) and a coil part (20) disposed on the magnetic sheet, wherein the magnetic sheet is composed of a first magnetic sheet (11) member located at an edge portion and a second magnetic sheet member (12) located in a center portion on the same plane, wherein the first magnetic sheet member and the second magnetic sheet member have different permeability rates from each other.
Abstract:
A soft magnetic alloy according to an embodiment of the present invention has a composition of the following Chemical formula: Fe100-a-bSiaCrb [Chemical Formula] where a is in a range of 1 to 7 at %, b is in a range of 3.5 to 17 at % and a+b is in a range of 10.5 to 18 at %.
Abstract:
An inductor includes a first magnetic body having a toroidal shape and having a ferrite; and a second magnetic body configured to be different from the first magnetic body and including a metal ribbon, wherein the second magnetic body includes an outer magnetic body disposed on an outer circumferential surface of the first magnetic body and an inner magnetic body disposed on an inner circumferential surface of the first magnetic body, and each of the outer magnetic body and inner magnetic body is wound in a plurality of layers in a circumferential direction of the first magnetic body.
Abstract:
Disclosed are a soft magnetic alloy and a wireless charging apparatus including the soft magnetic alloy. The soft magnetic alloy has a chemical formula expressed as Fe100−x−yCuxBy (wherein x ranges from 0.1 at % to 1.7 at % and y ranges from 2.3 at % to 9.6 at %). Without adding any expensive alloying element, only iron (Fe), copper (Cu), and boron (B) are used to obtain a nanocrystalline soft magnetic alloy that has a low coercive force and a high saturation magnetic flux density. The nanocrystalline soft magnetic alloy is applied to a wireless power transmitter and a wireless power receiver. Thereby, it is possible to make a shield member thin and increase a power transmission capacity. The soft magnetic alloy is easily processed into a flake form. The soft magnetic alloy processed in this way is applied to the shield member. Thereby, it is possible to increase permeability in a surface direction.