摘要:
Devices for loading a collapsible implant onto a delivery catheter. In one aspect, a loading device comprises an outer tubular structure and an inner tubular structure. The outer tubular structure comprises a narrowing passage configured to receive a catheter at one end and a collapsible implant at another end. The inner tubular structure is configured to move slidably and co-axially within the outer tubular structure. The inner tubular structure comprises a carrier pin configured to move within the narrowing passage as the inner tubular structure slides into the outer tubular structure. The sliding of the inner tubular structure into the outer tubular structure causes an implant mounted on the carrier pin to collapse as the implant moves through the narrowing passage and into the distal end of a catheter. In an optional aspect, the outer tubular structure further comprises a grasper to stabilize the catheter for receipt of the collapsible implant, and the internal diameter of the inner tubular structure varies to cause the grasper to first contract and stabilize the catheter, and then expand and release the catheter, as the grasper moves into the inner tubular structure.
摘要:
Devices for loading a collapsible implant onto a delivery catheter. In one aspect, a loading device comprises an outer tubular structure and an inner tubular structure. The outer tubular structure comprises a narrowing passage configured to receive a catheter at one end and a collapsible implant at another end. The inner tubular structure is configured to move slidably and co-axially within the outer tubular structure. The inner tubular structure comprises a carrier pin configured to move within the narrowing passage as the inner tubular structure slides into the outer tubular structure. The sliding of the inner tubular structure into the outer tubular structure causes an implant mounted on the carrier pin to collapse as the implant moves through the narrowing passage and into the distal end of a catheter. In an optional aspect, the outer tubular structure further comprises a grasper to stabilize the catheter for receipt of the collapsible implant, and the internal diameter of the inner tubular structure varies to cause the grasper to first contract and stabilize the catheter, and then expand and release the catheter, as the grasper moves into the inner tubular structure.
摘要:
Devices systems and methods are disclosed for preventing or inhibiting secretions from entering the lumen of a functional assessment catheter for the lungs, or removing collected secretions. The catheter comprises an expandable element, a cover, or an internal component configured to prevent or inhibit secretion flow into the lumen. The catheter alternatively or additionally comprises a distal end configured to facilitate air flow, absorb secretions or repel secretions away from the catheter tip. The catheter alternatively or additionally comprises an internal element such as a coilable wire, or an obturator configured to prevent secretions from being drawn into the lumen, or to actively remove the secretions. The catheter alternatively or additionally comprises an element to dry, aerate or aspirate the lung passageways.
摘要:
A method and system for catheter-based delivery of implants in the body. Implants can include stents, plugs, coils, baskets, filters, valves, grafts, prosthesis', drugs, drug reservoirs, biologics, or pumps. The catheter system comprises a uniquely configured grasper mechanism that allows holding the implant during the unsheathing delivery step prior to full release. With this delivery system, the implant can be unsheathed, positioned, and the position can be evaluated prior to releasing the implant from the catheter. Upon evaluation of the position of the implant, if it is found to be inaccurately placed, then removal of the implant can be done easily and without a device exchange. If the implant is found to be positioned correctly, the grasper mechanism can be actuated to release the implant from the catheter.
摘要:
Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
摘要:
Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
摘要:
Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
摘要:
Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
摘要:
Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.