Wind turbine blades and related methods of manufacturing

    公开(公告)号:US10690113B2

    公开(公告)日:2020-06-23

    申请号:US16064782

    申请日:2016-12-19

    Abstract: The present disclosure relates to a wind turbine blade. The wind turbine blade comprises a load carrying structure made of a fibre-reinforced polymer material. The load carrying structure comprises a plurality of stacked fibre layers or fibre mats in a thickness of the load carrying structure. The plurality of said stacked fibre layers or fibre mats are made of hybrid material comprising both carbon fibres and glass fibres and having a carbon fibre ratio. The carbon fibre ratio is defined as a volume of the carbon fibres divided by a total volume of the glass fibres and carbon fibres. At least a number of said stacked fibre layers or fibre mats have different carbon fibre ratios such that the carbon fibre ratio of fibre material varies through the thickness of the load carrying structure.

    Method of manufacturing a composite laminate structure

    公开(公告)号:US10723090B2

    公开(公告)日:2020-07-28

    申请号:US16078712

    申请日:2017-02-21

    Abstract: The present disclosure provides a method of manufacturing a composite laminate structure of a wind turbine blade part by means of resin transfer moulding, preferably vacuum-assisted resin transfer moulding. In a resin transfer moulding, fibre-reinforcement material is impregnated with liquid resin in a mould cavity. The mould cavity comprises rigid mould part having a mould surface defining a surface of the wind turbine blade part.The method comprises alternately stacking on the rigid mould part: i. a number of unidirectional fibre-reinforcement layers comprising electrically conductive fibres, such as carbon fibres, and ii. a flow-enhancing fabric layer for enhancing a flow of the resin during infusion of the fibre-reinforcement layers, the flow-enhancing fabric layer comprising an open-structured layer made of a first material, wherein the flow-enhancing fabric layer comprises a longitudinal direction and a transverse direction, The flow-enhancing fabric layer further comprises filaments or bundles of fibres made of a second material, which is an electrically conductive material and which are arranged and configured to provide a conductive path from first electrically conductive fibres of a first fibre-reinforcement layer on a first side of the flow-enhancing layer to second electrically conductive fibres of a second fibre-reinforcement layer on a second side of the flow-enhancing layer.

    Wind turbine blades and potential equalization systems

    公开(公告)号:US10584684B2

    公开(公告)日:2020-03-10

    申请号:US16064758

    申请日:2016-12-19

    Abstract: A wind turbine blade, extending longitudinally root end to tip end, having a load carrying structure, a shell body and a lightning protection system is described. The load carrying structure is fiber-reinforced polymer in a plurality of stacked layers comprising electrically conductive fibers. The lightning protection system comprises a lightning receptor arranged freely accessible in or on the shell body and a lightning down-conductor electrically connected to the lightning receptor and is configured to be electrically connected to a ground connection. The blade further comprises a potential equalisation system providing a potential equalising connection between a number of the electrically conductive fibers of the load carrying structure and the lightning protection system. The system comprises a dissipating element made of an electrically conductive material which in turn comprises at least one transverse connector arranged to extend transverse through a thickness of the stacked fiber layers and configured to dissipate.

Patent Agency Ranking