Abstract:
The disclosure is directed to a system and method for detecting and classifying at least one media defect. A periodic pattern is written to a medium to yield at least one waveform. The magnitude of the waveform is compared against a defect threshold to detect the presence or absence of media defects in the medium. When at least one defect is detected, a magnitude for each of at least two harmonics of the waveform is determined in the defect range. The defect is classified by comparing a ratio of the magnitudes of the at least two harmonics against a classification threshold.
Abstract:
A contact event between a sensing device and a storage medium is detected by receiving a signal indicating a physical proximity between the sensing device and the storage medium; generating a plurality of frequency bin outputs; comparing one or more frequency bin outputs to a corresponding first level threshold to yield a corresponding comparator output; summing the comparator output with at least one prior instance of the comparator output to yield an aggregated value; comparing the aggregated value to an aggregate threshold to yield an aggregate output; and generating a contact event output if one or more of a first group of the plurality of frequency bin outputs has an associated aggregate output set to a predefined binary value and a predefined minimum number of a second group of the plurality of frequency bin outputs has an associated aggregate output set to a predefined binary value.
Abstract:
A method and system for detecting an end of a preamble without interpolation. The method includes receiving information from a zero phase start module, the information including a target phase constraint, a polyant, and a zero phase start phase. The method also includes selecting two samples per preamble cycle of short filter outputs and long filter outputs based on the target phase constraint, the polyant, and the zero phase start phase. The method further includes decimating the short filter outputs and the long filter outputs such that the selected two samples for each of the filters per preamble cycle are output upon decimation. The method additionally includes performing a sign comparison on the corresponding short filter and long filter outputs after decimation, wherein a sign mismatch of the corresponding short filter and long filter outputs indicates an end of a preamble.
Abstract:
An exemplary hard disk (HD) track has a full overhead section followed by user sections interleaved with intervening partial overhead sections that are too short for an HD drive (HDD) to attain sufficient timing lock using only one partial overhead section, but long enough for the drive to attain sufficient timing lock using multiple partial overhead sections to read user data from the user section immediately following the partial overhead section where sufficient timing lock is attained. The drive begins, but does not finish, attaining timing lock based on the first partial overhead section, but the drive does finish attaining timing lock based on the last partial overhead section. The drive can also read user data in subsequent user sections by maintaining or re-attaining sufficient timing lock using each successive partial overhead section. Increased user data storage is achieved without significantly impacting average latency of HDD read sessions compared to conventional HD drives.
Abstract:
Systems, methods, devices, circuits for data processing, and more particularly to systems and methods for reporting a synchronization indication and for applying a synchronization window. As an example, a system is discussed that includes: a head assembly including a first read head and a second read head; a down track distance calculation circuit operable to calculate a down track distance between the first read head and the second read head; and a synchronization mark detection circuit. The synchronization mark detection circuit is operable to: assert a synchronization mark window based at a location based at least in part on the down track distance; query a first data set derived from the first read head for a synchronization mark occurring within the synchronization mark window; and query a second data set derived from the second read head for the synchronization mark occurring within the synchronization mark window.
Abstract:
A method and system for performing a shortened acquire cycle for at least one fragment of at least one data sector having coherently written fragments, the coherently written fragments being written during a single rotation of a storage medium. The method includes performing a full acquire cycle for a first fragment of a particular data sector of the at least one data sector. The method further includes reusing at least a portion of the acquisition information of the first fragment to perform a shortened acquire cycle for at least one subsequent coherently written fragment. The method also includes reusing at least a portion of the acquisition information of the first fragment to perform a shortened acquire cycle for at least one subsequent coherently written fragment. Additionally, the method includes performing the shortened acquire cycle for the at least one subsequent coherently written fragment.
Abstract:
A contact event between a sensing device and a storage medium is detected by receiving a signal indicating a physical proximity between the sensing device and the storage medium; generating a plurality of frequency bin outputs; comparing one or more frequency bin outputs to a corresponding first level threshold to yield a corresponding comparator output; summing the comparator output with at least one prior instance of the comparator output to yield an aggregated value; comparing the aggregated value to an aggregate threshold to yield an aggregate output; and generating a contact event output if one or more of a first group of the plurality of frequency bin outputs has an associated aggregate output set to a predefined binary value and a predefined minimum number of a second group of the plurality of frequency bin outputs has an associated aggregate output set to a predefined binary value.
Abstract:
An exemplary hard disk (HD) track has a full overhead section followed by user sections interleaved with intervening partial overhead sections that are too short for an HD drive (HDD) to attain sufficient timing lock using only one partial overhead section, but long enough for the drive to attain sufficient timing lock using multiple partial overhead sections to read user data from the user section immediately following the partial overhead section where sufficient timing lock is attained. The drive begins, but does not finish, attaining timing lock based on the first partial overhead section, but the drive does finish attaining timing lock based on the last partial overhead section. The drive can also read user data in subsequent user sections by maintaining or re-attaining sufficient timing lock using each successive partial overhead section. Increased user data storage is achieved without significantly impacting average latency of HDD read sessions compared to conventional HD drives.
Abstract:
A method and system for performing a shortened acquire cycle for at least one fragment of at least one data sector having coherently written fragments, the coherently written fragments being written during a single rotation of a storage medium. The method includes performing a full acquire cycle for a first fragment of a particular data sector of the at least one data sector. The method further includes reusing at least a portion of the acquisition information of the first fragment to perform a shortened acquire cycle for at least one subsequent coherently written fragment. The method also includes reusing at least a portion of the acquisition information of the first fragment to perform a shortened acquire cycle for at least one subsequent coherently written fragment. Additionally, the method includes performing the shortened acquire cycle for the at least one subsequent coherently written fragment.
Abstract:
A method and system for providing format savings in data sectors. The method includes receiving a signal outputted from an analog-to-digital conversion circuit. The method further includes shifting a signal phase of the signal based at least upon a corrected phase at an output of a phase loop and a phase measured when the signal was digitally sampled by the analog-to-digital conversion circuit. The method also includes adjusting a gain of the signal based at least upon a current gain loop correction and a gain correction made when the signal was digitally sampled by the analog-to-digital conversion circuit. Additionally, the method includes adjusting the signal based at least upon an output of a current offset correction and an offset correction made when the signal was digitally sampled by the analog-to-digital conversion circuit. The method also includes outputting an adjusted signal to a sync mark detector.