Abstract:
A substrate support includes an inner portion arranged to support a substrate, an edge ring surrounding the inner portion, and a controller that calculates a desired pocket depth of the substrate support. Pocket depth corresponds to a distance between an upper surface of the edge ring and an upper surface of the substrate. Based on the desired pocket depth, the controller selectively controls an actuator to raise and lower at least one of the edge ring and the inner portion to adjust the distance between the upper surface of the edge ring and the upper surface of the substrate.
Abstract:
A method of operating a substrate support includes arranging a substrate on an inner portion of the substrate support and calculating a desired pocket depth of the substrate support using data indicative of a relationship between the desired pocket depth and at least one process parameter. The desired pocket depth corresponds to a desired distance between an upper surface of an edge ring surrounding the inner portion and an upper surface of the substrate. The method further includes selectively controlling, based on the desired pocket depth as calculated, an actuator to raise and lower at least one of the edge ring and the inner portion to adjust the distance between the upper surface of the edge ring and the upper surface of the substrate.
Abstract:
A semiconductor substrate processing apparatus includes a cooled pin lifter paddle for raising and lowering a semiconductor substrate. The semiconductor substrate processing apparatus comprises a processing chamber in which the semiconductor substrate is processed, a heated pedestal for supporting the semiconductor substrate in the processing chamber, and the cooled pin lifter paddle located below the pedestal. The cooled pin lifter paddle includes a heat shield and at least one flow passage in an outer peripheral portion thereof through which a coolant can be circulated to remove heat absorbed by the heat shield of the cooled pin lifter paddle. The cooled pin lifter paddle is vertically movable such that lift pins on an upper surface of the heat shield travel through corresponding holes in the pedestal and a source of coolant is in flow communication with the at least one flow passage.
Abstract:
A method of operating a substrate support includes arranging a substrate on an inner portion of the substrate support and calculating a desired pocket depth of the substrate support using data indicative of a relationship between the desired pocket depth and at least one process parameter. The desired pocket depth corresponds to a desired distance between an upper surface of an edge ring surrounding the inner portion and an upper surface of the substrate. The method further includes selectively controlling, based on the desired pocket depth as calculated, an actuator to raise and lower at least one of the edge ring and the inner portion to adjust the distance between the upper surface of the edge ring and the upper surface of the substrate.
Abstract:
A substrate support includes an inner portion arranged to support a substrate, an edge ring surrounding the inner portion, and a controller that calculates a desired pocket depth of the substrate support. Pocket depth corresponds to a distance between an upper surface of the edge ring and an upper surface of the substrate. Based on the desired pocket depth, the controller selectively controls an actuator to raise and lower at least one of the edge ring and the inner portion to adjust the distance between the upper surface of the edge ring and the upper surface of the substrate.
Abstract:
A semiconductor substrate processing apparatus includes a cooled pin lifter paddle for raising and lowering a semiconductor substrate. The semiconductor substrate processing apparatus comprises a processing chamber in which the semiconductor substrate is processed, a heated pedestal for supporting the semiconductor substrate in the processing chamber, and the cooled pin lifter paddle located below the pedestal. The cooled pin lifter paddle includes a heat shield and at least one flow passage in an outer peripheral portion thereof through which a coolant can be circulated to remove heat absorbed by the heat shield of the cooled pin lifter paddle. The cooled pin lifter paddle is vertically movable such that lift pins on an upper surface of the heat shield travel through corresponding holes in the pedestal and a source of coolant is in flow communication with the at least one flow passage.