摘要:
Multivalent ligands which carry or display at least one recognition element (RE), and preferably a plurality of recognition elements, for binding directly or indirectly to cells or other biological particles or more generally by binding to any biological molecule. The multivalent ligands provided can function for binding or targeting to any biological particle or molecule and particularly to targeting of cells or cell types or viruses, for cell aggregation and for macromolecular assembly of biological macromolecules. The multivalent ligands of this invention are applicable for creating scaffolds (assemblies) of chemical or biological species, including without limitation, antigens, epitopes, ligand binding groups, ligands for cell receptors and various macromolecules. In these scaffolds, the number, spacing, relative positioning and relative orientation of recognition elements can be controlled. The invention also relates to methods for aggregating biological particles and macromolecules and for modulating biological response employing the multivalent ligands provided.
摘要:
The present invention generally relates to methods and compositions for generating vancomycin analogs. Specifically the invention relates to generating a vancomycin library through chemoselective ligation of a sugar moiety with a vancomycin aglycon. In particular, the present invention provides a library of vancomycin analogs, where the member of the library comprises at least one vancomycin analog selected from 2′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 3′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 4′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 6′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 2′-N-acylbiphenyl-glucosyl vancomycin neoglycoside, 3′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside, 4′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside and 6′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside.
摘要:
The present invention generally relates to methods and compositions for generating vancomycin analogs. Specifically the invention relates to generating a vancomycin library through chemoselective ligation of a sugar moiety with a vancomycin aglycon. In particular, the present invention provides a library of vancomycin analogs, where the member of the library comprises at least one vancomycin analog selected from 2′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 3′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 4′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 6′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 2′-N-acylbiphenyl-glucosyl vancomycin neoglycoside, 3′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside, 4′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside and 6′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside.
摘要:
The present invention relates to methods of use of glycosyltransferases and related novel compounds. The invention exploits the reversibility of glycosyltransferases to generate new sugars, unnatural biomolecules and numerous one-pot reactions for generation of new biomolecules having varied backbones such as enediynes, vancomycins, bleomycins, anthracyclines, macrolides, pluramycins, aureolic acids, indolocarbazoles, aminglycosides, glycopeptides, polyenes, coumarins, benzoisochromanequinones, calicheamicins, erythromycin, avermectins, ivermectins, angucyclines, cardiac glycosides, steroids or flavinoids. In preferred embodiments, the invention specifically relates to biosynthesis of anticancer (the enediyne calicheamicin, CLM), anthelmintic agents (the macrolides avermectin, ivermectin and erythromycin) and antibiotic (the glycopeptide vancomycin, VCM) natural product-based drugs developed by reversible, bidirectional glycosyltransferase-catalyzed reactions.
摘要:
The present invention generally relates to methods and compositions for generating vancomycin analogs. Specifically the invention relates to generating a vancomycin library through chemoselective ligation of a sugar moiety with a vancomycin aglycon. In particular, the present invention provides a library of vancomycin analogs, where the member of the library comprises at least one vancomycin analog selected from 2′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 3′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 4′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 6′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 2′-N-acylbiphenyl-glucosyl vancomycin neoglycoside, 3′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside, 4′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside and 6′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside.
摘要:
The present invention relates to methods of use of glycosyltransferases and related compounds. The invention exploits the reversibility of glycosyltransferases to generate new sugars, unnatural biomolecules and numerous one-pot reactions for generation of new biomolecules having varied backbones such as enediynes, vancomycins, bleomycins, anthracyclines, macrolides, pluramycins, aureolic acids, indolocarbazoles, aminglycosides, glycopeptides, polyenes, coumarins, benzoisochromanequinones, calicheamicins, erythromycin, avermectins, ivermectins, angucyclines, cardiac glycosides, steroids or flavinoids. In preferred embodiments, the invention specifically relates to biosynthesis of anticancer (the enediyne calicheamicin, CLM), anthelmintic agents (the macrolides avermectin, ivermectin and erythromycin) and antibiotic (the glycopeptide vancomycin, VCM) natural product-based drugs developed by reversible, bidirectional glycosyltransferase-catalyzed reactions.
摘要:
The present invention generally relates to methods and compositions for generating vancomycin analogs. Specifically the invention relates to generating a vancomycin library through chemoselective ligation of a sugar moiety with a vancomycin aglycon. In particular, the present invention provides a library of vancomycin analogs, where the member of the library comprises at least one vancomycin analog selected from 2′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 3′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 4′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 6′-N-acyldecanoyl-glucosyl vancomycin neoglycoside, 2′-N-acylbiphenyl-glucosyl vancomycin neoglycoside, 3′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside, 4′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside and 6′-N-acylbiphenoyl-glucosyl vancomycin neoglycoside.