摘要:
In an embodiment, one reinforced substrate for use in a photovoltaic device includes a polymer base material and a reinforcing structure bonded with the base material. The reinforced substrate presents a surface in a condition that is made-ready for deposition of thin film layers of the photovoltaic device. A thin film photovoltaic device includes the reinforced substrate, a back contact layer formed on the surface of the reinforced substrate, and a solar absorber layer formed on the back contact layer. A plurality of thin film photovoltaic devices may be formed on a common reinforced substrate. A process of producing a reinforced substrate includes combining a fluid base material and a fiber reinforcing structure to form an impregnated fiber reinforcement. The impregnated fiber reinforcement is cured to form the reinforced substrate, and the reinforced substrate is annealed.
摘要:
In an embodiment, one reinforced substrate for use in a photovoltaic device includes a polymer base material and a reinforcing structure bonded with the base material. The reinforced substrate presents a surface in a condition that is made-ready for deposition of thin film layers of the photovoltaic device. A thin film photovoltaic device includes the reinforced substrate, a back contact layer formed on the surface of the reinforced substrate, and a solar absorber layer formed on the back contact layer. A plurality of thin film photovoltaic devices may be formed on a common reinforced substrate. A process of producing a reinforced substrate includes combining a fluid base material and a fiber reinforcing structure to form an impregnated fiber reinforcement. The impregnated fiber reinforcement is cured to form the reinforced substrate, and the reinforced substrate is annealed.
摘要:
A copper indium diselenide (CIS)-based photovoltaic device includes a CIS-based solar absorber layer including copper, indium, and selenium. The CIS-based photovoltaic device further includes a substrate formed from a silicone composition. The substrate, because it is formed from the silicone composition, is both flexible and sufficiently able to withstand annealing temperatures in excess of 500° C. to obtain maximum efficiency of the device.