摘要:
The instant invention generally provides polymer carbon composite comprising a molecularly self-assembling material and a carbon filler, and a process of making and an article comprising the polymer carbon composite.
摘要:
The instant invention generally provides polymer pi-bond-philic filler composite comprising a molecularly self-assembling material and a pi-bond-philic filler, and a process of making and an article comprising the polymer pi-bond-philic filler composite. The instant invention also generally provides a process of separating a pi-bond-philic gas from a separable gas mixture comprising the pi-bond-philic gas.
摘要:
The instant invention generally provides polymer pi-bond-philic filler composite comprising a molecularly self-assembling material and a pi-bond-philic filler, and a process of making and an article comprising the polymer pi-bond-philic filler composite. The instant invention also generally provides a process of separating a pi-bond-philic gas from a separable gas mixture comprising the pi-bond-philic gas.
摘要:
The present invention relates to a process for preparing a graphite oxide while purging chlorine dioxide. The invention process employs starting materials comprising a sulfuric acid, a nitric acid, a chlorate salt, and a graphite and further employs an inert purge gas.
摘要:
A reactor for carbothermal reduction is disclosed. By supplying gaseous nitrogen throughout a discrete aliquot of a preferably pelletized mixture of aluminum oxide, carbon and, optionally, calcium oxide during the carbothermal reduction thereof to aluminum nitride and continuously removing gaseous reaction products therefrom, a high quality aluminum nitride is produced. One means of supplying gaseous nitrogen to the mixture of solid reactants is a perforated tray having a hollowed-out bottom. Gaseous nitrogen supplied to the hollowed-out portion flows through the perforations and throughout solid reactants contained in the tray. The carbon may be alternatively supplied, in whole or in part, as a gaseous reactant.
摘要:
The present invention relates to a nitrate salt-based process for preparing a graphite oxide. The invention nitrate salt-based process employs starting materials comprising a sulfuric acid, an inorganic nitrate salt, an amount of water, a first amount of chlorate salt, and a graphite.
摘要:
The present invention relates to a process for preparing a graphite oxide while purging chlorine dioxide. The invention process employs starting materials comprising a sulfuric acid, a nitric acid, a chlorate salt, and a graphite and further employs an inert purge gas.
摘要:
A two step method for preparing a filler composition, the filler composition useful to prepare a nanocomposite polymer and an epoxy nanocomposite coating. First, disperse a water dispersible filler material in a liquid comprising water, but without any added intercalation agent, to form a dispersion. Second, replace at least a portion of the water of the liquid with an organic solvent so that the water concentration of the liquid is less than six percent by weight to form the filler composition, the average size of at least one dimension of the filler material being less than two hundred nanometers upon examination by transmission electron microscopy of a representative freeze dried sample of the dispersion of the first step. A nanocomposite polymer can be prepared by mixing the filler composition with one or more polymer, polymer component, monomer or prepolymer to produce a polymer containing the filler composition.
摘要:
The present invention relates to a continuous-feed furnace assembly and processes for preparing and continuously thermally exfoliating graphite oxide to give a highly exfoliated graphite.
摘要:
A cation exchanging layered material having a cation exchange capacity satisfied by ion-exchangeable organic and inorganic cations, the ion-exchangeable organic cation content of the betastructured cation exchanging layered material being in the range of from ten to ninety-five percent of the cation exchange capacity of the cation exchanging layered material. The structure of the material is unique and is defined as a “betastructure”. A nanocomposite polymer incorporating such a “betastructured” cation exchanging layered material with a polymer.