Abstract:
A method for normalizing the exit velocity of multiple extrudate strands from a multiple die extruder and apparatus for producing the same. The invention describes utilizing a die with individual channels, and installing metering assembly on each individual channel. The metering assembly can then be adjusted to independently increase or decrease the velocity of product through an orifice. By independently adjusting individual velocities of extrudate strands, after successive iterations of adjusting, measuring, and readjusting, a plurality of extrudate stands can be produced having substantially uniform velocity. Further the invention can comprise a single extruder or a co-extruder used to make a co-extruded product wherein uniform velocity becomes more desirable.
Abstract:
An extruder die assembly and method for using same is disclosed which is designed for adaptation to a wide variety of commercial-grade extrusion devices common in the food industry. The extruder die assembly is inserted into an appropriate compartment within an extrusion device such that a first extrudate is directed down a coaxially aligned passageway within the forming section and combined with a fluid additive in the injection section whereupon the resulting food mass is compressed through a converging nozzle bore in the nozzle section to produce an extruded food product. The forming section and injection section are fabricated as a matching set. A novel feature of the invention is an injection nozzle which supplies fluid additives from an exterior pressurized source to a supply port formed in the extruder die assembly. The subject injection nozzle exhibits superior sealing qualities in conjunction with simplicity and flexibility. The minimal affected space required to receive the subject injection nozzle allows a single extruder die assembly to have more than one supply port fashioned therein. Thus, multiple injection nozzles may be used to supply a single extruder die assembly with multiple colors and/or flavors. The injection nozzle of the present invention also exhibits a unique dual seal characteristic, which is particularly effective in conditions involving high temperature. The subject injection nozzle is also highly flexible in that one injection nozzle may be used interchangeably with another (i.e., each injection nozzle is not unique to a particular supply port).
Abstract:
The method for producing extruded, farinaceous pellets includes extruding a mixture so that it expands upon exiting an extruder. This prepuffed ribbon is then subjected to stretching and cutting steps to produce pellets. The prepuffing reduces the moisture content of the ribbon so that cut pellets made from the ribbon can be immediately processed without the need for a moisture conditioning and/or dehydration step. In stretching, the extrudate ribbon is passed through a set of rollers to increase the extrudate ribbon's velocity thereby causing the ribbon to stretch. Stretching the extrudate ribbon causes a reduction in thickness along with an increase in density. After cutting, the pellets can then be expanded in a puffing stage to produce a product that has a desirable light and crunchy texture.
Abstract:
A method for making a direct expanded snack piece shaped like a peanut is disclosed. Ingredients comprising peanut flour, ground corn product, rice flour and oat flour are introduced into an extruder. The ingredients are hydrated and extruded through an orifice adapted to produce a puffed snack piece shaped like a peanut and cut into puffed snacks. The puffed snacks are dried and seasoned.
Abstract:
An extruded legume snack food comprising an extruded puff product based on a dried legume powder having a shape that is a facsimile of the natural starting material, such as a pea pod. A legume powder is mixed with a starch, extruded, and then shaped. The extrudate can be shaped by a number of forming devices or, in an alternative embodiment, by the orifice shape of an extrusion die when the extrudate is face cut from the extruder.
Abstract:
A method for making a direct expanded snack piece shaped like a peanut is disclosed. Ingredients comprising peanut flour, ground corn product, rice flour and oat flour are introduced into an extruder. The ingredients are hydrated and extruded through an orifice adapted to produce a puffed snack piece shaped like a peanut and cut into puffed snacks. The puffed snacks are dried and seasoned.
Abstract:
An extruder die assembly and method for using same is disclosed that may be adapted to a wide variety of commercial-grade extrusion devices common in the food industry. The disclosed method comprises extruding a known composition of a farinaceous food product through the extruder die assembly of the present invention to produce a flavored direct-expanded food product exhibiting enhanced flavor characteristics, but requiring no post-extrusion drying or seasoning process. The injection section of the extruder die assembly is used to impart flavoring additives into the extrudate mass shortly before expansion, thereby preserving the flavoring characteristics of the additive by minimizing the heat exposure of the flavoring additive. The extruder die assembly may also include static mixing elements downstream from the injection section to homogenize the flavoring or seasoning media into the flowing mass of extrudate.
Abstract:
An extruder die assembly and method for using same is disclosed which is designed for adaptation to a wide variety of commercial-grade extrusion devices common in the food industry. The extruder die assembly is inserted into an appropriate compartment within an extrusion device such that a first extrudate is directed down a coaxially aligned passageway within the forming section and combined with a fluid additive in the injection section whereupon the resulting food mass is compressed through a converging nozzle bore in the nozzle section to produce an extruded food product. The forming section and injection section are fabricated as a matching set. The matched set, comprising the forming section and the injection section, when properly aligned and coupled form an internal peripheral reservoir manifold through which a fluid additive may be supplied to at least one and more preferably a plurality of capillary channels which in turn impart a distinct cross-sectional design into a flowing mass of a first extrudate.
Abstract:
The improved apparatus includes an improved extruder die assembly comprising a forming section, an injection section, and a converging nozzle section having axially aligned ridgelines which gradually project into the bore of the nozzle as the nozzle converges to gradually disrupt the axial flow of an extrudate at specific peripheral points thereby altering the extrudate's velocity profile. By gradually disrupting the axial flow in close proximity to the projecting ridgelines prior to its extrusion, the dimensional quality of the resulting direct expanded food piece is greatly improved. Moreover, by carefully positioning the capillary channels of the injection section into that portion of the flowing extrudate not affected by the axially aligned ridgelines, a distinct colored and/or flavored pattern is imparted into the extrudable food mass during the extrusion process while improving the quality of dimensional design aspects of the resulting extruded, complexly shaped, direct expanded food products.