Abstract:
A dimming module and a solid state lighting device are shown. The dimming module includes a rectifying circuit, a first driving circuit, and a processing circuit. The rectifying circuit is configured to convert an AC voltage to a rectified voltage. The first driving circuit is configured to receive the rectified voltage to provide a first current so as to drive a first lighting module. The first driving circuit includes a first switch. The first switch turns ON or OFF selectively according to a first control voltage signal so as to control the first current. The processing circuit is configured to receive a dimming command, and adjust the first control voltage signal according to the dimming command. The first control voltage signal is configured to control a phase delay angle and a duty cycle of the first current.
Abstract:
A dimming module and a solid state lighting device are shown. The dimming module includes a rectifying circuit, a phase control circuit, a processing circuit and a first driving circuit. The rectifying circuit is configured to convert an input AC voltage to a rectified voltage signal. The phase control circuit is configured to receive the rectified voltage signal and a dimming command, and output a control voltage signal correspondingly in which the phase control circuit controls a phase delay angle of the control voltage signal according to the dimming command. The processing circuit is configured to receive the control voltage signal and adjust a first driving voltage signal according to the phase delay angle. The first driving circuit is configured to receive the first driving voltage signal to drive a first lighting module.
Abstract:
A dimming module includes a triggering circuit, a control signal generating circuit, a voltage converting circuit, and a linear driving circuit. The triggering circuit is configured to control a trigger delay angle of an AC input voltage according to a dimming command, in order to output a first voltage signal correspondingly. The control signal generating circuit is configured to output a control voltage according to the first voltage signal. The voltage converting circuit is configured to output a DC operating voltage having an operating level according to the first voltage signal, and output the DC operating voltage to a lighting module, in which the lighting module includes a light-emitting diode. The linear driving circuit is configured to drive the lighting module according to the control voltage.
Abstract:
A light-emitting diode (LED) light tube driving circuit includes a LED driver and a rectifier unit. The LED driver is configured for receiving an operating voltage to drive at least one LED. The rectifier unit has a first input/output terminal and a second input/output terminal and is electrically coupled to an external alternating-current power source selectively by the first input/output terminal and the second input/output terminal. The rectifier unit is configured for providing the operating voltage to the LED driver. The rectifier unit further includes a first rectifier diode and a second rectifier diode.
Abstract:
An application circuit includes a dynamic load circuit and a control circuit. The dynamic load circuit is electrically connected to a light source. The control circuit is electrically connected to the dynamic load circuit and a TRIAC. The control circuit controls the load status of the dynamic load circuit based on output current from the TRIAC, so as to turn on the light source.
Abstract:
A lamp includes a light-emitting device, a lamp cover and a lamp driver. The lamp cover covers the light-emitting device, such that the light emitted by the light-emitting device partly passes through the lamp cover and is partly reflected from the lamp cover. The lamp driver determines whether the lamp cover is damaged or the lamp cover still covers the light-emitting device based on the light reflected from the lamp cover to subsequently drive or turn off the light-emitting device selectively. The lamp driver includes a driving unit. The driving unit stops driving the light-emitting device when the lamp cover is damaged or the light-emitting device is not covered by the lamp cover. The driving unit keeps driving the light-emitting device when the lamp cover is not damaged or the light-emitting device is normally covered by the lamp cover.
Abstract:
A dimming circuit is disclosed herein. The dimming circuit includes a control voltage receiving module and a driving module. The control voltage receiving module is configured to output a reference voltage according to a control voltage. The driving module is electrically connected to the control voltage receiving module, in which the driving module includes a driving transistor, a first transistor and a feedback circuit. The driving transistor is configured to provide a driving current to drive a lighting module. The first transistor is configured to control the driving transistor with feedback according to the reference voltage. The feedback circuit is electrically connected between the driving transistor and the first transistor and configured to determine the operating state of the first transistor according to the driving current.
Abstract:
An illumination device includes a rectifier circuit, M light-emitting modules, and a control module. The rectifier circuit has a positive output terminal and a negative output terminal, and generates a driving voltage between the positive output terminal and the negative output terminal according to an input power. The M light-emitting modules are coupled between the positive output terminal and the negative output terminal. Each of the M light-emitting modules has a conduction voltage, and includes a light-emitting unit that includes at least one light-emitting diode. The control module is coupled between the rectifier circuit and the M light-emitting modules, and controls the M light-emitting modules to dynamically form S light-emitting diode strings coupled in parallel with each other. A number of the light-emitting units in each of the S light-emitting diode strings is N, in which S×N=M, where M, S, N are positive integers.
Abstract:
An LED driver circuit includes a first driver, a second driver, a switch, a first detection module, a second detection module and a control module. The first driver provides a first driving current according to a supply voltage. The second driver provides a second driving current according to the supply voltage. The switch is selectively coupled to the first or second driver. An LED emits light according to the first or second driving current. When the switch is coupled to the first driver, the first detection module keeps detecting the first driving current and outputting a first sensing signal. When the switch is coupled to the second driver, the second detection module keeps detecting the second driving current and outputting a second sensing signal. The control module outputs a first or second control signal according to the first or second sensing signal for controlling the switch.
Abstract:
An illumination system includes a light-emitting device, a first switch element, a driving device, a detecting circuit, an arithmetic unit and a power supply unit. The first switch element is configured for receiving an external voltage supplied by an external power source. The driving device is configured for converting the external voltage to a direct-current power signal for driving the light-emitting device to emit light; the detecting circuit is configured for detecting a voltage across the first switch element and converting the voltage to a detecting signal; the arithmetic unit is configured for performing an arithmetic operation on the direct-current power signal and the detecting signal to generate a control signal; and the power supply unit is configured for supplying power for the light-emitting device according to the control signal and driving the light-emitting device to emit light. An illumination driving method is also disclosed herein.