Abstract:
A host substrate and method of making a host substrate for nitride based thin-film semiconductor devices are provided. According to one embodiment, the method includes the steps of providing a silicon layer; etching a pattern of holes in the silicon layer; plating the silicon layer with copper to fill the holes etched in the silicon layer; bonding the silicon layer to a gallium nitride (GaN) layer, the GaN layer attached to a sapphire substrate; and removing the sapphire substrate. The host substrate is configured to address the coefficient of thermal expansion (CTE) mismatch problem and reduce the amount of stress resulting from such CTE mismatch. A combination of metal and semiconductor materials provide for the desired thermal and electrical conductivity while providing for subsequent dicing and incorporation of the finished semiconductor devices into other circuits.
Abstract:
A method of making quasi-vertical light emitting devices includes growing semiconductor layers on a growth substrate and etching the semiconductor layers to produce device isolation trenches forming separable semiconductor devices and holes. Blind holes are drilled in the substrate at the location of each of the holes in the semiconductor layers. The drilling of the blind holes defines blind hole walls and a blind hole end in each of the blind holes. N-semiconductor metal is deposited in each of the blind holes. An n-electrode contact is formed in each of the blind holes by plating each of the blind holes with an n-electrode metal connected to the n-semiconductor metal. The substrate is thinned to expose the n-electrode metal as an n-electrode. Bonding metal is deposited to the n-electrode for packaging.
Abstract:
A quasi-vertical light emitting device is provided. According to one embodiment of the present invention, the quasi-vertical light emitting diode includes a sapphire substrate; a plurality of semiconductor layers grown on the sapphire substrate, the plurality of semiconductor layers including an n-GaN layer, an active layer, and a p-GaN layer; a plurality of holes etched in the plurality of semiconductor layers, each of the plurality of holes etched to the sapphire substrate, and a plurality of sapphire holes in the sapphire substrate, each of the plurality of holes aligned with one of the plurality of sapphire holes to form hole walls, the hole walls and bottom deposited with an n-metal and each of the plurality of holes filled with another metal to form a n-electrode contact; an n-mesa in the active layer and the p-GaN layer, the n-mesa deposited with an n-metal and a passivation layer grown over the n-metal; and a p-metal layer deposited on the p-GaN layer, and a p-electrode bonded to the p-metal.
Abstract:
A method of fabricating a compound semiconductor vertical LED is provided. A first growth substrate capable of supporting compound semiconductor epitaxial growth thereon is provided. One or more epitaxial layers of compound semiconductor material such as GaN or InGaN is formed on the first growth substrate to create a portion of a vertical light emitting diode. Plural trenches are formed in the compound semiconductor material. Passivating material is deposited in one or more trenches. A hard material is at least partially deposited in the trenches and optionally on portions of the compound semiconductor material. The hard material has a hardness greater than the hardness of the compound semiconductor. A metal layer is deposited over the compound semiconductor material followed by metal planarization. A new host substrate is bonded to the metal layer and the first growth substrate is removed. Dicing is used to form individual LED devices.
Abstract:
A method of making quasi-vertical light emitting devices includes growing semiconductor layers on a growth substrate and etching the semiconductor layers to produce device isolation trenches forming separable semiconductor devices and holes. Blind holes are drilled in the substrate at the location of each of the holes in the semiconductor layers. The drilling of the blind holes defines blind hole walls and a blind hole end in each of the blind holes. N-semiconductor metal is deposited in each of the blind holes. An n-electrode contact is formed in each of the blind holes by plating each of the blind holes with an n-electrode metal connected to the n-semiconductor metal. The substrate is thinned to expose the n-electrode metal as an n-electrode. Bonding metal is deposited to the n-electrode for packaging.
Abstract:
A quasi-vertical light emitting device is provided. According to one embodiment of the present invention, the quasi-vertical light emitting diode includes a sapphire substrate; a plurality of semiconductor layers grown on the sapphire substrate, the plurality of semiconductor layers including an n-GaN layer, an active layer, and a p-GaN layer; a plurality of holes etched in the plurality of semiconductor layers, each of the plurality of holes etched to the sapphire substrate, and a plurality of sapphire holes in the sapphire substrate, each of the plurality of holes aligned with one of the plurality of sapphire holes to form hole walls, the hole walls and bottom deposited with an n-metal and each of the plurality of holes filled with another metal to form a n-electrode contact; an n-mesa in the active layer and the p-GaN layer, the n-mesa deposited with an n-metal and a passivation layer grown over the n-metal; and a p-metal layer deposited on the p-GaN layer, and a p-electrode bonded to the p-metal.