摘要:
Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs) or diodes such as junction barrier Schottky (JBS) diodes or PiN diodes. The devices have graded p-type semiconductor layers and/or regions formed by epitaxial growth. The methods do not require ion implantation. The devices can be made from a wide-bandgap semiconductor material such as silicon carbide (SiC) and can be used in high temperature and high power applications.
摘要:
A junction barrier Schottky (JBS) rectifier device and a method of making the device are described. The device comprises an epitaxially grown first n-type drift layer and p-type regions forming p+-n junctions and self-planarizing epitaxially over-grown second n-type drift regions between and, optionally, on top of the p-type regions. The device may include an edge termination structure such as an exposed or buried P+ guard ring, a regrown or implanted junction termination extension (JTE) region, or a “deep” mesa etched down to the substrate. The Schottky contact to the second n-type drift region and the ohmic contact to the p-type region together serve as an anode. The cathode can be formed by ohmic contact to the n-type region on the backside of the wafer. The devices can be used in monolithic digital, analog, and microwave integrated circuits.
摘要:
Semiconductor devices and methods of making the devices are described. The devices can be implemented in SiC and can include epitaxially grown n-type drift and p-type trenched gate regions, and an n-type epitaxially regrown channel region on top of the trenched p-gate regions. A source region can be epitaxially regrown on top of the channel region or selectively implanted into the channel region. Ohmic contacts to the source, gate and drain regions can then be formed. The devices can include edge termination structures such as guard rings, junction termination extensions (JTE), or other suitable p-n blocking structures. The devices can be fabricated with different threshold voltages, and can be implemented for both depletion and enhanced modes of operation for the same channel doping. The devices can be used as discrete power transistors and in digital, analog, and monolithic microwave integrated circuits.
摘要:
Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs) or diodes such as junction barrier Schottky (JBS) diodes or PiN diodes. The devices have graded p-type semiconductor layers and/or regions formed by epitaxial growth. The methods do not require ion implantation. The devices can be made from a wide-bandgap semiconductor material such as silicon carbide (SiC) and can be used in high temperature and high power applications.
摘要:
A silicon carbide semi-insulating epitaxy layer is used to create power devices and integrated circuits having significant performance advantages over conventional devices. A silicon carbide semi-insulating layer is formed on a substrate, such as a conducting substrate, and one or more semiconducting devices are formed on the silicon carbide semi-insulating layer. The silicon carbide semi-insulating layer, which includes, for example, 4H or 6H silicon carbide, is formed using a compensating material, the compensating material being selected depending on preferred characteristics for the semi-insulating layer. The compensating material includes, for example, boron, vanadium, chromium, or germanium. Use of a silicon carbide semi-insulating layer provides insulating advantages and improved thermal performance for high power and high frequency semiconductor applications.
摘要:
A switching element combining a self-aligned, vertical junction field effect transistor with etched-implanted gate and an integrated antiparallel Schottky barrier diode is described. The anode of the diode is connected to the source of the transistor at the device level in order to reduce losses due to stray inductances. The SiC surface in the SBD anode region is conditioned through dry etching to achieve a low Schottky barrier height so as to reduce power losses associated with the turn on voltage of the SBD.
摘要:
A silicon carbide semi-insulating epitaxy layer is used to create power devices and integrated circuits having significant performance advantages over conventional devices. A silicon carbide semi-insulating layer is formed on a substrate, such as a conducting substrate, and one or more semiconducting devices are formed on the silicon carbide semi-insulating layer. The silicon carbide semi-insulating layer, which includes, for example, 4H or 6H silicon carbide, is formed using a compensating material, the compensating material being selected depending on preferred characteristics for the semi-insulating layer. The compensating material includes, for example, boron, vanadium, chromium, or germanium. Use of a silicon carbide semi-insulating layer provides insulating advantages and improved thermal performance for high power and high frequency semiconductor applications.
摘要:
A switching element combining a self-aligned, vertical junction field effect transistor with etched-implanted gate and an integrated antiparallel Schottky barrier diode is described. The anode of the diode is connected to the source of the transistor at the device level in order to reduce losses due to stray inductances. The SiC surface in the SBD anode region is conditioned through dry etching to achieve a low Schottky barrier height so as to reduce power losses associated with the turn on voltage of the SBD.
摘要:
A silicon carbide semi-insulating epitaxy layer is used to create power devices and integrated circuits having significant performance advantages over conventional devices. A silicon carbide semi-insulating layer is formed on a substrate, such as a conducting substrate, and one or more semiconducting devices are formed on the silicon carbide semi-insulating layer. The silicon carbide semi-insulating layer, which includes, for example, 4H or 6H silicon carbide, is formed using a compensating material, the compensating material being selected depending on preferred characteristics for the semi-insulating layer. The compensating material includes, for example, boron, vanadium, chromium, or germanium. Use of a silicon carbide semi-insulating layer provides insulating advantages and improved thermal performance for high power and high frequency semiconductor applications.
摘要:
An automotive door trim panel assembly including a plastic inner panel having a relatively thick, rigid, hollow retaining section which is designed for snap-fit installation of the assembly with a weather seal having a snap-on groove defined therein to thereby eliminate the need for additional fastening hardware while at the same time to provide increased rigidity and ease of tooling. The assembly also includes a contour door trim member for the inner panel.