摘要:
Systems, methods and applications for adjusting the imaging depth of a Fourier Domain optical coherence tomography system without impacting the axial resolution of the system are presented. One embodiment of the invention involves changing the sweep rate of a swept-source OCT system while maintaining the same data acquisition rate and spectral bandwidth of the source. Another embodiment involves changing the data acquisition rate of a SS-OCT system while maintaining the same sweep rate over the same spectral bandwidth. Several applications of variable imaging depth in the field of ophthalmic imaging are described.
摘要:
Systems and methods for increasing the duty cycle and/or producing interleaved pulses of alternating polarization states in swept-source optical coherence tomography (OCT) systems are considered. Embodiments including improved buffering, frequency selecting filter sharing among multiple SOAs, intracavity switching, and multiple wavelength bands are described. The unique polarization properties of the source configurations have advantages in speckle reduction, polarization-sensitive measurements, polarization state dependent phase shifts, spatial shifts, and temporal shifts in OCT measurements.
摘要:
Systems and methods for reducing noise in balanced detection based optical coherence tomography (OCT) systems are described. Embodiments including both optical hardware and electronic based solutions to spectrally filter and attenuate the source reference light in optical coherence tomography in an effort to reduce RIN and FPN noise in OCT systems are presented. A novel application to electronic balanced detection schemes in which a single source of reference detection is balanced against the interferometric signals from multiple interferometers is also presented.
摘要:
Techniques for collecting and processing complex OCT data to detect localized motion contrast information with enhanced accuracy and sensitivity are presented. In a preferred embodiment, vector differences between complex OCT signals taken at the same location on the sample are used to detect blood flow in the retina. Additional embodiments involving non-linear intensity weighting of the motion contrast information, normalization of the vector difference amplitudes, and calculating the absolute value of the standard deviation of Doppler signal are described. Image processing techniques to enhance the images resulting from these motion contrast techniques are also presented.
摘要:
Systems and methods for reducing the effects of motion on functional optical coherence tomography (OCT) imaging are described. Embodiments including post-processing and motion tracking are presented. A preferred embodiment in which functional OCT data is collected and analyzed for motion as a multiple scan unit is described. An extension of the invention to the collection of large field of view or montaged functional OCT data sets is also presented.