摘要:
A multi-stable memory or data storage element is used in crosspoint data-storage arrays, as a switch, a memory device, or as a logical device. The general structure of the multi-stable element comprises a layered, composite medium that both transports and stores charge disposed between two electrodes. Dispersed within the composite medium are discrete charge storage particles that trap and store charge. The multi-stable element achieves an exemplary bi-stable characteristic, providing a switchable device that has two or more stable states reliably created by the application of a voltage to the device. The voltages applied to achieve the “on” state, the “off” state, any intermediate state, and to read the state of the multi-stable element are all of the same polarity. The multi-stable element is stable, cyclable, and reproducible in both the “on” state and the “off” state. The storage medium has a relatively high resistance in both its on and off states. Consequently, a dense array can be fabricated without significant cross-talk between adjacent elements. No patterning of the layer of storage medium is required.
摘要:
A multi-stable memory or data storage element is used in crosspoint data-storage arrays, as a switch, a memory device, or as a logical device. The general structure of the multi-stable element comprises a layered, composite medium that both transports and stores charge disposed between two electrodes. Dispersed within the composite medium are discrete charge storage particles that trap and store charge. The multi-stable element achieves an exemplary bi-stable characteristic, providing a switchable device that has two or more stable states reliably created by the application of a voltage to the device. The voltages applied to achieve the “on” state, the “off” state, any intermediate state, and to read the state of the multi-stable element are all of the same polarity.
摘要:
A polymer comprising recurring units having an acid-eliminatable group on a side chain and aromatic ring-bearing cyclic olefin units is used to formulate a chemically amplified negative resist composition. Any size shift between the irradiated pattern and the formed resist which can arise in forming a pattern including isolated feature and isolated space portions is reduced, and a high resolution is obtained.
摘要:
A method of generating a relief pattern comprises disposing a resist composition on a substrate to form a film, the resist composition comprising a first silsesquioxane polymer of the formula (1): a second silsesquioxane polymer of the formula (2): and a photosensitive acid generator; patternwise exposing the film by e-beam lithography; heating the exposed film to effect crosslinking of the first polymer and second polymer in the exposed area; and developing the exposed film to form a negative relief pattern.
摘要:
A method of generating a relief pattern comprises disposing a resist composition on a substrate to form a film, the resist composition comprising a first silsesquioxane polymer of the formula (1): a second silsesquioxane polymer of the formula (2): and a photosensitive acid generator; patternwise exposing the film by e-beam lithography; heating the exposed film to effect crosslinking of the first polymer and second polymer in the exposed area; and developing the exposed film to form a negative relief pattern.