Abstract:
A method for regulating expression of a virulence gene of Agrobacterium is described. The method comprises the steps of stimulating cereal cells, such as sorghum, so as to produce an active, typically phenolic, compound and exposing the Agrobacterium to this compound. The compound induces expression of the virulence gene of the Agrobacterium, effecting T-DNA transfer from the Agrobacterium to the cereal cells, which are thereby transformed.
Abstract:
A method for regulating expression of a virulence gene of Agrobacterium is described. The method comprises the steps of stimulating cereal cells, such as sorghum, so as to produce an active, typically phenolic, compound and exposing the Agrobacterium to this compound. The compound induces expression of the virulence gene of the Agrobacterium, effecting T-DNA transfer from the Agrobacterium to the cereal cells, which are thereby transformed.
Abstract:
A process for the production and maintenance of pluripotent and/or totipotent progenitor cereal cells from undifferentiated callus cells is described. Production of the progenitor cells takes place via direct organogenesis on a medium containing at least one auxin and at least one cytokinin. For example, the auxin may be 2,4-dichlorophenoxyacetic acid, indole-3-acetic acid, picloran, naphthelenacetic acid, indole-3-propionic acid, indole-3-butyric acid, phenyl acetic acid, benzofuran-3-acetic acid or phenyl butyric acid, and the cytokinin may be benzyl amino purine, benzyladenine, thidiazuron, zeatin, isopentyladenine, trans-zeatin or dimethylallyladenine. Processes for transformation of the undifferentiated callus cells and/or the progenitor cereal cells are also described. Typical cereal cells are sorghum, maize, wheat, barley, millet, rye, canola, alfalfa, triticale and rice.
Abstract:
A novel double haploid maize line designated PH17AW and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing double haploid maize line PH17AW with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH17AW through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the double haploid line PH17AW or a trait conversion of PH17AW with another maize line. Inbred maize lines derived from double haploid maize line PH17AW, methods for producing other inbred maize lines derived from double haploid maize line PH17AW and the inbred maize lines and their parts derived by those methods.
Abstract:
A novel inbred maize line designated PHWWE and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing inbred maize line PHWWE with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PHWWE through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the inbred line PHWWE or a trait conversion of PHWWE with another maize line. Inbred maize lines derived from maize line PHWWE, methods for producing other inbred maize lines derived from inbred maize line PHWWE and the inbred maize lines and their parts derived by the use of those methods.
Abstract:
A novel double haploid maize line designated PHWVZ and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing double haploid maize line PHWVZ with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PHWVZ through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the double haploid line PHWVZ or a trait conversion of PHWVZ with another maize line. Inbred maize lines derived from double haploid maize line PHWVZ, methods for producing other inbred maize lines derived from double haploid maize line PHWVZ and the inbred maize lines and their parts derived by the use of those method.
Abstract:
Methods for plant transformation, for improving transformation efficiency, and for producing transgenic plants are provided. The methods comprise crossing a recipient plant from a genetic line of a plant species of interest with a donor plant selected from a transformation competent genetic line of the same plant species or of another closely related plant species to obtain a hybrid plant. Tissues obtained from the hybrid plant are transformation competent. These tissues can then be transformed with one or more nucleotide sequences of interest and selected for transgenic events having the nucleotide sequence of interest integrated within a chromosome derived from the recipient plant. Transformed cells can be selected and transgenic hybrid plants regenerated. The nucleotide sequence of interest can be introgressed into the genetic line from which the original recipient parent was derived, or into other genetic lines. Transformed plants and seeds are additionally provided.
Abstract:
Methods and compositions for the efficient transformation of sorghum is provided. The method involves infection with Agrobacterium, particularly those comprising a super-binary vector. In this manner, any gene of interest can be introduced into the sorghum plant. The transformed gene will be flanked by at least one T-DNA border and present in the transformed sorghum in low copy number. Transformed sorghum, cells, tissues, plants, and seed are also provided. The invention encompasses regenerated, fertile sorghum plants, transgenic seeds produced therefrom, T1 and subsequent generations.