摘要:
An analytical test strip for the determination of an analyte (such as glucose and/or hematocrit) in a bodily fluid sample (such as a whole blood sample) includes a first capillary sample-receiving chamber, a second capillary sample-receiving chamber, and a physical barrier island disposed between the first and second capillary sample-receiving chambers. Moreover, the physical island barrier is disposed such that bodily fluid sample flow between the first capillary sample-receiving chamber and the second capillary sample-receiving chamber is prevented during use of the analytical test strip.
摘要:
An electrochemical-based analytical test strip for the determination of an analyte (such as glucose) in a bodily fluid sample (for example, a whole blood sample) and/or a characteristic of the bodily fluid sample (for example, hematocrit) includes a first sample-receiving chamber with first and second sample-application openings, and first and second electrodes. The first and second electrodes are disposed in the first sample-receiving chamber between the first and second sample-application openings. The electrochemical-based analytical test strip also includes a second sample-receiving chamber and a plurality of electrodes disposed in the second sample-receiving chamber. In addition, the second sample-receiving chamber intersects the first sample-receiving chamber between the first and second electrodes, thereby defining a chamber intersection.
摘要:
An electrochemical-based analytical test strip (“EBAT”) for the determination of an analyte in a bodily fluid sample includes an electrically insulating substrate layer with a distal end and a patterned conductor layer that is disposed over the electrically-insulating substrate layer and has a working electrode (“WE”) and a counter/reference electrode (“C/RE”). The EBAT also includes a patterned insulation layer with an electrode exposure window configured to expose a WE exposed portion and a C/RE exposed portion, an enzymatic reagent layer; and a patterned spacer layer. The patterned insulation layer and the patterned spacer layer define a sample receiving chamber with a sample-receiving opening (“SRO”) at the distal end of the electrically insulating substrate layer and that extends across the WE exposed portion and the C/RE exposed portion. Furthermore, the enzymatic reagent layer is disposed over the WE and C/RE exposed portions and extends no more than 400 μm toward the SRO.
摘要:
This invention describes a method of reducing the effect of interfering compounds in a bodily fluid when measuring an analyte using an electrochemical sensor (62). In particular, the present method is applicable to electrochemical sensors where (62) the sensor includes a substrate (50), first and second working electrodes (10, 12), and a reference electrode (14) and either the first and second or only the second working electrode include regions which are bare of reagent (22). In this invention, an algorithm is described with mathematically corrects for the interference effect using the test strip embodiments of the present invention.
摘要:
An electrochemical-based analytical test strip includes an electrically-insulating substrate, a patterned conductive layer disposed over the electrically-insulating substrate, a patterned insulating layer disposed over the patterned conductive layer, an enzymatic reagent layer disposed over the patterned conductive layer, a patterned adhesive layer disposed above the enzymatic reagent layer and a top layer disposed over the enzymatic reagent layer. In addition, the test strip has a sample-receiving chamber defined by the electrically-insulating substrate, the patterned conductive layer, the patterned insulating layer, the enzymatic reagent layer, the patterned adhesive layer and the top layer. The sample receiving chamber of the test strip has a working portion and a non-working portion and the top layer has a first portion and an opaque second portion. The first portion is configured such that a user can view the working portion of the sample-receiving chamber through the first portion of the top layer, while the opaque second portion is configured to preclude a user from viewing the non-working portion of the sample-receiving chamber.
摘要:
This invention describes a method of reducing the effect of interfering compounds in a bodily fluid when measuring an analyte using an electrochemical sensor. In particular, the present method is applicable to electrochemical sensors where the sensor includes a substrate, first and second working electrodes, and a reference electrode and either the first and second or only the second working electrode include regions which are bare of reagent. In this invention, an algorithm is described with mathematically corrects for the interference effect using the test strip embodiments of the present invention.
摘要:
An electrochemical-based analytical test strip for the determination of an analyte (such as glucose) in a bodily fluid sample (for example, whole blood) includes an electrically insulating base layer, a patterned conductor layer disposed over the electrically-insulating layer, and a patterned insulation layer, with an electrode exposure window therethrough, disposed over the patterned conductor layer. The patterned conductive layer of the electrochemical-based analytical test strip includes at least one working electrode and a counter/reference electrode. In addition, at least a portion of the electrode exposure window is configured to expose a working electrode exposed portion and a counter/reference electrode exposed portion, with the working electrode exposed portion being rectangular in shape and the counter/reference electrode exposed portion being one of a crossroads shape and an at least six-sided portion of a crossroads shape.
摘要:
An electrochemical-based analytical test strip includes an electrically-insulating substrate, a patterned conductive layer disposed over the electrically-insulating substrate, a patterned insulating layer disposed over the patterned conductive layer, an enzymatic reagent layer disposed over the patterned conductive layer, a patterned adhesive layer disposed above the enzymatic reagent layer and a top layer disposed over the enzymatic reagent layer. In addition, the test strip has a sample-receiving chamber defined by the electrically-insulating substrate, the patterned conductive layer, the patterned insulating layer, the enzymatic reagent layer, the patterned adhesive layer and the top layer. The sample receiving chamber of the test strip has a working portion and a non-working portion and the top layer has a first portion and an opaque second portion. The first portion is configured such that a user can view the working portion of the sample-receiving chamber through the first portion of the top layer, while the opaque second portion is configured to preclude a user from viewing the non-working portion of the sample-receiving chamber.