摘要:
Video data of an environment may be prepared for presentation to a user in a virtual reality or augmented reality experience. According to one method, a plurality of locations distributed throughout a viewing volume may be designated, at which a plurality of vantages are to be positioned to facilitate viewing of the environment from proximate the locations. For each location, a plurality of images of the environment, captured from viewpoints proximate the location, may be retrieved. For each location, the images may be reprojected to a three-dimensional shape and combined to generate a combined image. The combined image may be applied to one or more surfaces of the three-dimensional shape to generate a vantage. The vantages may be stored such that the vantages can be used to generate viewpoint video of the scene, as viewed from a virtual viewpoint corresponding to an actual viewer's viewpoint within the viewing volume.
摘要:
Video data of an environment may be prepared for stereoscopic presentation to a user in a virtual reality or augmented reality experience. According to one method, a plurality of locations distributed throughout a viewing volume may be designated, at which a plurality of vantages are to be positioned to facilitate viewing of the environment from proximate the locations. For each location, a plurality of images of the environment, captured from viewpoints proximate the location, may be retrieved. For each location, the images may be reprojected to a three-dimensional shape and combined to generate a combined image. The combined image may be applied to one or more surfaces of the three-dimensional shape to generate a vantage. The vantages may be stored such that the vantages can be used to generate stereoscopic viewpoint video of the scene, as viewed from at least two virtual viewpoints corresponding to viewpoints of an actual viewer's eyes within the viewing volume.
摘要:
A video stream for a scene for a virtual reality or augmented reality experience may be stored and delivered to a viewer. The video stream may be divided into a plurality of units based on time segmentation, viewpoint segmentation, and/or view orientation segmentation. Each of the units may be divided into a plurality of sub-units based on a different segmentation from the units, via time segmentation, viewpoint segmentation, and/or view orientation segmentation. At least a portion of the video stream may be stored in a file that includes a plurality of the units. Each unit may be a group of pictures that is a sequence of successive frames in time. Each sub-unit may be a vantage defining a viewpoint from which the scene is viewable. Each vantage may be further divided into tiles, each of which is part of the vantage, limited to one or more particular view orientations.
摘要:
According to various embodiments of the present invention, the optical systems of light field capture devices are optimized so as to improve captured light field image data. Optimizing optical systems of light field capture devices can result in captured light field image data (both still and video) that is cheaper and/or easier to process. Optical systems can be optimized to yield improved quality or resolution when using cheaper processing approaches whose computational costs fit within various processing and/or resource constraints. As such, the optical systems of light field cameras can be optimized to reduce size and/or cost and/or increase the quality of such optical systems.
摘要:
RAW images and/or light field images may be compressed through the use of specialized techniques. The color depth of a light field image may be reduced through the use of a bit reduction algorithm such as a K-means algorithm. The image may then be retiled to group pixels of similar intensities and/or colors. The retiled image may be padded with extra pixel rows and/or pixel columns as needed, and compressed through the use of an image compression algorithm. The compressed image may be assembled with metadata pertinent to the manner in which compression was done to form a compressed image file. The compressed image file may be decompressed by following the compression method in reverse.
摘要:
RAW images and/or light field images may be compressed through the use of specialized techniques. The color depth of a light field image may be reduced through the use of a bit reduction algorithm such as a K-means algorithm. The image may then be retiled to group pixels of similar intensities and/or colors. The retiled image may be padded with extra pixel rows and/or pixel columns as needed, and compressed through the use of an image compression algorithm. The compressed image may be assembled with metadata pertinent to the manner in which compression was done to form a compressed image file. The compressed image file may be decompressed by following the compression method in reverse.
摘要:
RAW images and/or light field images may be compressed through the use of specialized techniques. The color depth of a light field image may be reduced through the use of a bit reduction algorithm such as a K-means algorithm. The image may then be retiled to group pixels of similar intensities and/or colors. The retiled image may be padded with extra pixel rows and/or pixel columns as needed, and compressed through the use of an image compression algorithm. The compressed image may be assembled with metadata pertinent to the manner in which compression was done to form a compressed image file. The compressed image file may be decompressed by following the compression method in reverse.
摘要:
The present invention may provide techniques for blurring an image. The image may be a light field image with color values and depth values for each pixel. The method may include retrieving the image and calculating a blurred color value of a subject pixel of the image. Calculating the blurred color value may include calculating first and second circles of confusion proximate coordinates of the subject pixel for a first depth and second depth greater than the first depth. Color values may be retrieved for first and second sets of pixels within the first and second circles of confusion with depth values proximate the first and second depths, respectively. The second set of pixels may not include pixels occluded by the first set of pixels. The blurred color value may be selected based on the color values of the first and second sets of pixels.
摘要:
According to various embodiments of the present invention, the optical systems of light field capture devices are optimized so as to improve captured light field image data. Optimizing optical systems of light field capture devices can result in captured light field image data (both still and video) that is cheaper and/or easier to process. Optical systems can be optimized to yield improved quality or resolution when using cheaper processing approaches whose computational costs fit within various processing and/or resource constraints. As such, the optical systems of light field cameras can be optimized to reduce size and/or cost and/or increase the quality of such optical systems.
摘要:
A virtual reality or augmented reality experience may be presented for a viewer through the use of input including only three degrees of freedom. The input may include orientation data indicative of a viewer orientation at which a head of the viewer is oriented. The viewer orientation may be mapped to an estimated viewer location. Viewpoint video may be generated of a scene as viewed from a virtual viewpoint with a virtual location corresponding to the estimated viewer location, from along the viewer orientation. The viewpoint video may be displayed for the viewer. In some embodiments, mapping may be carried out by defining a ray at the viewer orientation, locating an intersection of the ray with a three-dimensional shape, and, based on a location of the intersection, generating the estimated viewer location. The shape may be generated via calibration with a device that receives input including six degrees of freedom.