Abstract:
A meter module for use in a network device comprises conformance circuitry configured to: access a first memory device storing a conformance indicator that indicates whether a permitted rate of packet traffic has been exceeded, and classify packets received at the network device based at least in part on the conformance indicator. Sampling circuitry is configured to, responsively to the conformance circuitry classifying the packets: sample events associated with at least some of the received packets, and generate indicators of the sampled events. Update circuitry is configured to: access a second memory device, slower than the first memory, to update a number of tokens stored in the second memory device, and access the first memory device to update the conformance indicator when the updated number of tokens indicates that the permitted rate of packet traffic has been exceeded.
Abstract:
A network device includes a plurality of interfaces configured to receive, from a network, packets to be processed by the network device. A load determination circuit of the network device is configured to determine whether a packet traffic load of the network device is above a traffic load threshold, and a dual-mode counter module is configured to (i) determine a count of quanta associated with the received packets using a first counting mode in response to the load determination unit determining that the packet traffic load is above the traffic load threshold, and (ii) determine a count of quanta associated with the received packets using a second counting mode, different than the first counting mode, in response to the load determination unit determining that the packet traffic load is not above the traffic load threshold.
Abstract:
A packet processing device has a plurality of processing stages, including a first processing stage and a second processing stage arranged as a packet processing pipeline. The first processing stage and the second processing stage each have a respective processor configured to process a packet of a packet stream and a respective resource manager having a respective local resource lock corresponding to a remote resource. The respective processor requests the respective resource manager to allocate the remote resource. The respective resource manager responds to the request to allocate the remote resource by locking the remote resource with the respective local resource lock and allocating the remote resource. The respective processor implements a packet processing operation associated with the allocated remote resource.
Abstract:
A network device includes a plurality of interfaces configured to receive, from a network, packets to be processed by the network device. A load determination circuit of the network device is configured to determine whether a packet traffic load of the network device is above a traffic load threshold, and a dual-mode counter module is configured to (i) determine a count of quanta associated with the received packets using a first counting mode in response to the load determination unit determining that the packet traffic load is above the traffic load threshold, and (ii) determine a count of quanta associated with the received packets using a second counting mode, different than the first counting mode, in response to the load determination unit determining that the packet traffic load is not above the traffic load threshold.
Abstract:
A packet processing device has a plurality of processing stages, including a first processing stage and a second processing stage arranged as a packet processing pipeline. The first processing stage and the second processing stage each have a respective processor configured to process a packet of a packet stream and a respective resource manager having a respective local resource lock corresponding to a remote resource. The respective processor requests the respective resource manager to allocate the remote resource. The respective resource manager responds to the request to allocate the remote resource by locking the remote resource with the respective local resource lock and allocating the remote resource. The respective processor implements a packet processing operation associated with the allocated remote resource.
Abstract:
Systems and methods are provided for counting a number of received packets and a number of bytes contained in the received packets. A system includes a first memory disposed in an integrated circuit, the first memory being configured as a first combination counter having a first set of bits for storing a subtotal of received packets, and a second set of bits for storing a subtotal of bytes contained in the received packets. A second memory is external to the integrated circuit. The second memory is configured to store a total number of received packets and a total number of bytes contained in the received packets. Update circuitry is configured to update the total number of packets stored in the second whenever either of the first set of bits or the second set of bits overflows in the first memory.
Abstract:
A network device that processes a stream of packets has an ingress front end. The ingress front end determines whether the packets are handled in a bounded latency path or in a best-effort path. The bounded latency path packets are granted a resource with a higher priority than the best-effort path packets. As the packets are processed through a number of processing stages, with processing engines, the bounded latency packets are processed within a period of time corresponding to a guaranteed rate. Resources are granted to the best-effort path packets only when the processing engines determine that the resource grant will not impact the latency bounds with respect to the first packets.
Abstract:
A packet processing device has a plurality of processing stages, including a first processing stage and a second processing stage arranged as a packet processing pipeline. The first processing stage and the second processing stage each have a respective processor configured to process a packet of a packet stream and a respective resource manager having a respective local resource lock corresponding to a remote resource. The respective processor requests the respective resource manager to allocate the remote resource. The respective resource manager responds to the request to allocate the remote resource by locking the remote resource with the respective local resource lock and allocating the remote resource. The respective processor implements a packet processing operation associated with the allocated remote resource.
Abstract:
Systems and methods are provided for counting a number of received packets and a number of bytes contained in the received packets. A system includes a first memory disposed in an integrated circuit, the first memory being configured as a first combination counter having a first set of bits for storing a subtotal of received packets, and a second set of bits for storing a subtotal of bytes contained in the received packets. A second memory is external to the integrated circuit. The second memory is configured to store a total number of received packets and a total number of bytes contained in the received packets. Update circuitry is configured to update the total number of packets stored in the second whenever either of the first set of bits or the second set of bits overflows in the first memory.
Abstract:
A network device that processes a stream of packets has an ingress front end. The ingress front end determines whether the packets are handled in a bounded latency path or in a best-effort path. The bounded latency path packets are granted a resource with a higher priority than the best-effort path packets. As the packets are processed through a number of processing stages, with processing engines, the bounded latency packets are processed within a period of time corresponding to a guaranteed rate. Resources are granted to the best-effort path packets only when the processing engines determine that the resource grant will not impact the latency bounds with respect to the first packets.