Abstract:
The present disclosure relates to compositions and methods for modifying a gene sequence, and for systems for delivering such compositions. For example, the disclosure relates to modifying a gene sequence using a CRISPR-Cas9 or other nucleic acid editing system, and methods and delivery systems for achieving such gene modification, such as viral or non-viral delivery systems.
Abstract:
The present disclosure relates to compositions and methods for modifying a gene sequence, and for systems for delivering such compositions. For example, the disclosure relates to modifying a gene sequence using a CRISPR-Cas9 or other nucleic acid editing system, and methods and delivery systems for achieving such gene modification, such as viral or non-viral delivery systems.
Abstract:
The disclosure relates to compositions comprising and methods for chemical modification of single guide RNA (sgRNA), tracrRNA and/or crRNA used individually or in combination with one another or Cas system components. Compositions comprising modified ribonucleic acids have been designed with chemical modification for even higher efficiency as unmodified native strand of sgRNA. Administration of modified ribonucleic acids will allow decreased immune response when administered to a subject, increased stability, increased editing efficiency and facilitated in vivo delivery of sgRNA via various delivery platforms. The disclosure also relates to methods of decreasing off-target effect of CRISPR and a CRISPR complex.
Abstract:
The disclosure relates to compositions comprising and methods for chemical modification of single guide RNA (sgRNA), tracrRNA and/or crRNA used individually or in combination with one another or Cas system components. Compositions comprising modified ribonucleic acids have been designed with chemical modification for even higher efficiency as unmodified native strand of sgRNA. Administration of modified ribonucleic acids will allow decreased immune response when administered to a subject, increased stability, increased editing efficiency and facilitated in vivo delivery of sgRNA via various delivery platforms. The disclosure also relates to methods of decreasing off-target effect of CRISPR and a CRISPR complex.
Abstract:
The disclosure relates to compositions comprising and methods for chemical modification of single guide RNA (sgRNA), tracrRNA and/or crRNA used individually or in combination with one another or Cas system components. Compositions comprising modified ribonucleic acids have been designed with chemical modification for even higher efficiency as unmodified native strand of sgRNA. Administration of modified ribonucleic acids will allow decreased immune response when administered to a subject, increased stability, increased editing efficiency and facilitated in vivo delivery of sgRNA via various delivery platforms. The disclosure also relates to methods of decreasing off-target effect of CRISPR and a CRISPR complex.
Abstract:
The present disclosure relates to compositions and methods for modifying a gene sequence, and for systems for delivering such compositions. For example, the disclosure relates to modifying a gene sequence using a CRISPR-Cas9 or other nucleic acid editing system, and methods and delivery systems for achieving such gene modification, such as viral or non-viral delivery systems.
Abstract:
Methods of transfecting cells in vivo, by administering an injectable pharmaceutical composition including a genome editing composition and a pharmaceutically acceptable carrier to a subject by hydrodynamic injection into a vessel of the subject are disclosed. Typically, the pharmaceutical composition is administered in a volume and at rate of injection suitable to transfect target eukaryotic cells in the subject with an effective amount of the genome editing composition to alter the genome of the target cells. In preferred embodiments the subject is a mammal, such as rodent, or a primate such as a human. The methods can be used to treat one or more symptoms of a genetic disease or condition.
Abstract:
The present invention provides novel 1,3,5-triazinane-2,4,6-trione derivatives, such as compounds of any one of Formulae (I) and (II), and salts thereof, and methods of preparing the compounds. Also provided are compositions including a compound of the invention and an agent (e.g., an siRNA, mRNA, or plasmid DNA). The present invention also provides methods and kits using the compositions for delivering an agent to a subject (e.g., to the liver, spleen, or lung of the subject) or cell and for treating and/or preventing a range of diseases, such as genetic diseases, proliferative diseases, hematological diseases, neurological diseases, liver diseases, and lung diseases.
Abstract:
The present disclosure relates to compositions and methods for modifying a gene sequence, and for systems for delivering such compositions. For example, the disclosure relates to modifying a gene sequence using a CRISPR-Cas9 or other nucleic acid editing system, and methods and delivery systems for achieving such gene modification, such as viral or non-viral delivery systems.
Abstract:
The present disclosure relates to compositions and methods for modifying a gene sequence, and for systems for delivering such compositions. For example, the disclosure relates to modifying a gene sequence using a CRISPR-Cas9 or other nucleic acid editing system, and methods and delivery systems for achieving such gene modification, such as viral or non-viral delivery systems.