Abstract:
The present invention provides a method of dynamic thermal management applied to a portable device, wherein the method includes the steps of: obtaining a surface temperature of the portable device; obtaining a junction temperature of a chip of the portable device; and calculating an upper limit of the junction temperature according to the junction temperature and the surface temperature.
Abstract:
The present invention provides a method of dynamic thermal management applied to a portable device, wherein the method includes the steps of: obtaining a surface temperature of the portable device; obtaining a junction temperature of a chip of the portable device; and calculating an upper limit of the junction temperature according to the junction temperature and the surface temperature.
Abstract:
The invention provides a thermal control method and a thermal control system. The thermal control method comprises: detecting a temperature variance of a component of the electronic device to generate a detecting result; and determining a temperature threshold value for the integrated circuit as a throttling point according to the detecting result. The thermal control system comprises: a detecting unit, for detecting a temperature variance of a component of the electronic device to generate a detecting result; and a determining unit, for determining a temperature threshold value for the integrated circuit as a throttling point according to the detecting result.
Abstract:
A mobile device performs thermal management during concurrent battery charging and workload execution based on a thermal headroom. The thermal headroom is an amount of power, in a form of heat, that heat dissipation hardware in the mobile device is estimated to dissipate when the mobile device operates at a target temperature. After the thermal headroom is determined, the mobile device determines a first power allocation to system loading, which is caused by one or more applications running on the mobile device. The first power allocation is subtracted from the thermal headroom to obtain a second power allocation to a charger, which charges a battery module of the mobile device while the one or more application are running. The mobile device then sets an input power limit of the charger based on the second power allocation.
Abstract:
Methods and apparatus are provided for adjusting the power limit based on multiple factors including the current temperature, the previous temperature, and the target temperature. In one novel aspect, the device obtains the total power limit based on the base power and the delta power. The base power is set to be the current power if the temperature-jump is higher than a temperature-jump threshold, otherwise, is set to be the previous power limit. The delta power equals to the weighted conversion sum of the temperature jump and the temperature margin, which is the temperature difference between the current temperature and the target temperature. In another novel aspect, the device calculates one or more component power limit for each corresponding component power source of the device based on the total power limit. The device adjusts power settings for each corresponding component power source based on the component power limit.
Abstract:
A thermal protection method includes: determining a thermal headroom based on a difference between a current temperature and a predetermined threshold temperature; determining a power budget based on the thermal headroom; and utilizing a processor-based system to employ a target computing power setting according to at least the power budget, wherein selection of the target computing power setting is constrained by the power budget to ensure that the target computing power setting does not make the current temperature exceed the predetermined threshold temperature when employed by the processor-based system.
Abstract:
The invention provides a thermal control method and a thermal control system. The thermal control method comprises: detecting a temperature variance of a component of the electronic device to generate a detecting result; and determining a temperature threshold value for the integrated circuit as a throttling point according to the detecting result. The thermal control system comprises: a detecting unit, for detecting a temperature variance of a component of the electronic device to generate a detecting result; and a determining unit, for determining a temperature threshold value for the integrated circuit as a throttling point according to the detecting result.