Abstract:
A radio-frequency (RF) front-end supporting at least a first and second wireless communication bands includes a mixer arranged for mixing a received signal with a first local oscillation signal when the shared receiver front-end performs the reception operation according to the first wireless communication band, and for mixing the received signal with a second local oscillation signal when the shared receiver front-end performs the reception operation according to the second wireless communication band, wherein the first and second local oscillation signals are different in frequency.
Abstract:
A diplexer, for coupling a first radio frequency (RF) signal corresponding to a first carrier frequency and a second RF signal corresponding to a second carrier frequency is disclosed. The diplexer includes a first port arranged to couple the first RF signal; a second port arranged to couple the second RF signal; a third port capable of connecting an antenna; a first impedance unit coupled to the first port and the third port; and a second impedance unit coupled to the second port and the third port; wherein the first port, the second port and the third port are coupled to a direct current (DC) ground; wherein the first impedance unit is arranged to provide an first open-circuit impedance against the second RF signal, and the second impedance unit is arranged to provide a second open-circuit impedance against the first RF signal.
Abstract:
A radio-frequency (RF) front-end supporting at least a first and second wireless communication bands includes a mixer arranged for mixing a received signal with a first local oscillation signal when the shared receiver front-end performs the reception operation according to the first wireless communication band, and for mixing the received signal with a second local oscillation signal when the shared receiver front-end performs the reception operation according to the second wireless communication band, wherein the first and second local oscillation signals are different in frequency.
Abstract:
A communication device is provided with a processing unit. The processing unit determines whether at least one elementary file in a single subscriber identity card is required to be read out. If so, the processing unit activates one subscriber identity module instance in the subscriber identity card for the elementary file, and reads the elementary file from the subscriber identity card.
Abstract:
An exemplary signal amplification circuit includes an input stage, a plurality of output stages and a selecting stage. The input stage has an input node for receiving an input signal and an output node for outputting an intermediate signal. The output stages are coupled to a plurality of output ports of the signal amplification circuit, respectively. Each output stage generates a corresponding processed signal to a corresponding output port according to a gain and the intermediate signal when enabled. The selecting stage selectively couples the output node of the input stage to at least one of the output stages. The signal amplification circuit outputs a first number of processed signal(s) when operated under a first operational mode, and outputs a second number of processed signal(s) when operated under a second operational mode.
Abstract:
A method of selecting an active SIM for an emergency service and a multi-SIM device utilizing the same are disclosed. The method, adopted by the multi-SIM device, includes: receiving a request for an emergency call on a first SIM camping on an LTE network; determining whether a second SIM camps on a second communications network which supports an emergency service; and when the second communications network supports the emergency service, performing the emergency call from the second SIM.
Abstract:
A method of selecting a SIM for a location service and a multi-SIM device utilizing the same are disclosed. The method, adopted by a multi-SIM device, includes: acquiring Secure User Plane Location (SUPL) information from a corresponding communications network which each SIM is in connection with; determining which communications network supports a location service based on the SUPL information; and requesting the location service on a SIM that is in connection with the supported communications network.
Abstract:
A diplexer, for coupling a first radio frequency (RF) signal corresponding to a first carrier frequency and a second RF signal corresponding to a second carrier frequency is disclosed. The diplexer includes a first port arranged to couple the first RF signal; a second port arranged to couple the second RF signal; a third port capable of connecting an antenna; a first impedance unit coupled to the first port and the third port; and a second impedance unit coupled to the second port and the third port; wherein the first port, the second port and the third port are coupled to a direct current (DC) ground; wherein the first impedance unit is arranged to provide an first open-circuit impedance against the second RF signal, and the second impedance unit is arranged to provide a second open-circuit impedance against the first RF signal.
Abstract:
An exemplary signal amplification circuit includes an input stage, a plurality of output stages and a selecting stage. The input stage has an input node for receiving an input signal and an output node for outputting an intermediate signal. The output stages are coupled to a plurality of output ports of the signal amplification circuit, respectively. Each output stage generates a corresponding processed signal to a corresponding output port according to a gain and the intermediate signal when enabled. The selecting stage selectively couples the output node of the input stage to at least one of the output stages. The signal amplification circuit outputs a first number of processed signal(s) when operated under a first operational mode, and outputs a second number of processed signal(s) when operated under a second operational mode.