Abstract:
A bellows assembly for a fluid delivery system is a multi-component device that includes a cylindrical pressure jacket and a bellows syringe that is received within the pressure jacket. The bellows syringe includes a cap member and a bellows member. The bellows syringe in one embodiment is adapted to be secured to the pressure jacket by the cap member. The cap member is formed with a discharge port, which may be formed as conventional luer fitting. The discharge port is disposed coaxially within an annular wall on the outward facing side of the cap member and may be recessed within the annular wall. The bellows member is a hollow body that includes a series of bellows sections or rings. A distal end of the bellow member is formed with a discharge neck terminating in a discharge port, and the proximal end is formed with a closed end wall.
Abstract:
A syringe system and components thereof are disclosed. The system may include a syringe body having a hollow lumen, a proximal open end, and a distal end. The syringe body may be configured to house a fluid therein. The syringe system may further include a plunger positioned in the hollow lumen of the syringe body, forming a seal with an inner wall of the syringe body. The plunger may include a removable piston having a shaft extending from the distal end towards the proximal open end, a stopper removably connected to a distal portion of the shaft, and at least one coupler attached to the distal portion of the shaft. The stopper may be configured to slidably move within the hollow lumen to facilitate movement of the fluid within the syringe body. The coupler may be configured to facilitate removal and attachment of the stopper from the piston.
Abstract:
A hazardous fluid transport container and a hazardous fluid delivery system are disclosed. The hazardous fluid transport container includes a housing enclosing an at least partially shielded enclosure. First and second fluid path elements are disposed within the housing, with the first fluid path element and second fluid path element fluidly coupled together. A pump unit may be provided for dispensing fluid from the first and second fluid path elements optionally into a third fluid path element. Also, methods for priming the hazardous fluid transport container and for mitigating laminar flow injection bolus spreading are disclosed. Additionally, disclosed is a radioactive fluid transport container for a syringe or other container. The radioactive fluid transport container allows the syringe or container to be used in an injection procedure without removal from the container.
Abstract:
A syringe shield useful for containing a syringe loaded with radioactive and/or light sensitive drugs is disclosed. The syringe shield may reduce a healthcare provider's exposure to radiation and/or may reduce or eliminate ambient light contamination to optically sensitive components in the syringe.
Abstract:
A container adapted to store and transport an injectate is disclosed. The container includes a divider which extends from an open top end toward a closed bottom end, the divider spaced apart from the closed bottom end to define an opening and separating the container into a first fluid path on a first side of the divider through which fluid can enter the container through the inlet port and a second fluid path on a second side of the divider through which fluid can enter the opening and exit the container through the outlet port. The second fluid path includes at least one filter between the opening and the open top end through which fluid can pass from the first fluid path to the second fluid path but through which at least one component of the injectate cannot pass.
Abstract:
A system for processing cells (and/or other injectate components) includes a container and a plunger adapted to be slidably positioned within the container. The system includes at least one inlet port through which a fluid can enter the system and at least one effluent port through which an effluent can exit the system. The plunger section forms a sealing engagement with the inner wall of the container such that rearward motion of the plunger is adapted to draw fluid into the system via the inlet and forward motion of the plunger is adapted to force effluent out of the system via the effluent port.
Abstract:
A bellows assembly for a fluid delivery system is a multi-component device that includes a cylindrical pressure jacket and a bellows syringe that is received within the pressure jacket. The bellows syringe includes a cap member and a bellows member. The bellows syringe in one embodiment is adapted to be secured to the pressure jacket by the cap member. The cap member is formed with a discharge port, which may be formed as conventional luer fitting. The discharge port is disposed coaxially within an annular wall on the outward facing side of the cap member and may be recessed within the annular wall. The bellows member is a hollow body that includes a series of bellows sections or rings. A distal end of the bellow member is formed with a discharge neck terminating in a discharge port, and the proximal end is formed with a closed end wall.