Abstract:
In accordance with one aspect of the present invention there is provided an electronic smoking device comprising a flow channel and an atomizer. The flow channel can comprise an incoming airflow opening, an incoming airflow pathway, a sensor assembly, and an outgoing airflow opening. The atomizer can be fluidly coupled to the flow channel. The flow channel can be configured to direct an airflow from the incoming airflow opening, through the incoming airflow pathway, over the sensor assembly, and through the outgoing airflow opening. The electronic smoking device can further be configured to pass the airflow over the atomizer.
Abstract:
A droplet delivery device includes a housing with a mouthpiece port or outlet from a nasal device for releasing fluid droplets, a fluid reservoir, and an ejector bracket having a membrane positioned between a mesh with a plurality of openings and a vibrating member that is coupled to an electronic transducer, such as an ultrasonic transducer. The transducer vibrates the vibrating member which causes the membrane to push fluid supplied by the reservoir through the mesh to generate droplets in an ejected stream released through the outlet.
Abstract:
Embodiments relate to an intranasal drug delivery device, system, and process. The drug delivery device can have a compliant/flexible soft nib. The drug delivery device can have an actuator and shot chamber. The drug delivery device can have a non-air interface mechanically pressurized fluid reservoir. The drug delivery device can have a facial or device recognition application to prevent intentional or unintentional misuse.
Abstract:
Systems and methods for determining a touch input are provided. The systems and methods generally include measuring the peak voltage at an electrode over a measurement period and determining a touch input based on the peak voltage. The systems and methods can conserve computing resources by deferring digital signal processing until after a peak electrode capacitance has been sampled. The systems and methods are suitable for capacitive sensors using self-capacitance and capacitive sensors using mutual capacitance. The systems and methods are also suitable for capacitive buttons, track pads, and touch screens, among other implementations.
Abstract:
A flow of gases in a respiratory therapy system can be conditioned to achieve more consistent output from sensors configured to sense a characteristic of the flow. The flow can be mixed by imparting a tangential, rotary, helical, or swirling motion to the flow of gases. The mixing can occur upstream of the sensors. The flow can be segregated into smaller compartments to reduce turbulence in a region of the sensors.
Abstract:
A nebulizer assembly for a respiratory device is provided having a housing defining a chamber. The housing also has a nebulizer port configured to receive a nebulizer to discharge atomized medication into the chamber. An outlet of a handle is coupled to the inlet of the housing. A hose is coupled to an inlet of the handle. A patient interface is coupled to the outlet of the housing. Air flows from the hose to the patient interface via the handle and the housing. The air mixes with the atomized medication within the chamber.
Abstract:
The invention of the present application relates to an apparatus to aid in administering inhaled pharmaceutical aerosol to a patient. The apparatus is used in conjunction with an aerosol delivery device. The apparatus comprises steps on the top and bottom of the apparatus, which when used aid the patient causes mandibular advancement, and opening of the mouth, causing opening of patient's airway, resulting in improved aerosol lung deposition. The invention also relates to a method of using such apparatus in a combination with an aerosol delivery device or a system, and to the mouthpiece of said apparatus.
Abstract:
A device for generating a condensation aerosol includes (a) vaporization chamber having an upstream first inlet and a downstream outlet; (b) a heater element in the vaporization chamber between the upstream first inlet and the downstream outlet; (c) an airflow path in fluid communication with the vaporization chamber, wherein the airflow path comprises a second inlet configured to permit a substantially laminar flow of air into the airflow path, wherein the second inlet is downstream of the heater element; and (d) the device having components or apparatus on or in the device for changing air flow in the vaporization chamber. Changing the air flow in the vaporization chamber may be used to change the particle size of a condensation aerosol produced in the vaporization chamber, and/or to change the amount of visible vapor emitted from the device.
Abstract:
An in-line sampling system that includes a sampling valve and a syringe for selectively introducing a fluid to and aspirating a fluid from a downstream fluid conduit connected to a catheterized patient. The syringe has a fluid chamber into which fluid is aspirated, a volume regulator for adjusting the volume, a fluid line through which fluid flows through the syringe to a downstream fluid conduit. The syringe also has a valve mechanism for selectively controlling fluid flow along the fluid line and selectively shifting the volume regulator to adjust the volume of the fluid chamber. A housing provides for the fluid chamber and mounts the fluid line, valve mechanism and volume regulator.
Abstract:
In one aspect, embodiments of the present invention provide an aerosolization device for ensuring proper delivery of an aerosolized medication to a user's respiratory system. The aerosolization device may include a conduit, an aerosol generator, a restrictor disposed within the conduit, and an indicator mechanism. The conduit may include a mouthpiece end by which a user may cause inspiratory flow through the conduit. The aerosol generator may include a vibratable mesh. The restrictor may define a plurality of apertures disposed along an outer periphery of the restrictor configured to provide an increase in pressure differential that varies with an inspiratory flow rate within the conduit and to provide a relatively laminar flow downstream of the restrictor compared to upstream of the restrictor. The indicator mechanism may indicate to a user a state of a parameter of the inspiratory flow relative to a predefined desired range.