Abstract:
A medical device and associated method for monitoring a fluid status of a patient that includes determining a first impedance signal along an electrode vector comprising a portion of a thoracic cavity, determining a second impedance signal along an extra-thoracic electrode vector, and determining a fluid status measurement in response to the determined first impedance signal and the determined second impedance signal
Abstract:
A medical device and associated method for delivery of a cardiac therapy that includes determining a first impedance signal along a thoracic electrode vector extending within a portion of a thoracic cavity, determining a second impedance signal along an extra-thoracic electrode vector extending outside the thoracic cavity, comparing first amplitude measurements corresponding to the first impedance signals and second amplitude measurements corresponding to the second impedance signals, comparing first slope measurements corresponding to the first impedance signals and second slope measurements corresponding to the second impedance signals, and determining delivery of the cardiac therapy in response to the comparing.
Abstract:
Systems and methods include differential diagnosis for acute heart failure to provide treatment to a patient including determining whether the patient has cardiac volume overload, determining whether the patient has decreased abdominal venous system volume, and providing the appropriate treatment in response to the determinations. A multi-sensor system may be used to determine cardiac volume and abdominal venous system volume. Fluid redistribution treatment may be provided when cardiac volume overload is accompanied by a decrease in abdominal venous system volume. Fluid accumulation treatment may be provided when cardiac volume overload is not accompanied by a decrease in abdominal venous system volume.
Abstract:
A medical device and associated method for delivery of a cardiac therapy that includes determining a first impedance signal along a thoracic electrode vector extending within a portion of a thoracic cavity, determining a second impedance signal along an extra-thoracic electrode vector extending outside the thoracic cavity, comparing first amplitude measurements corresponding to the first impedance signals and second amplitude measurements corresponding to the second impedance signals, comparing first slope measurements corresponding to the first impedance signals and second slope measurements corresponding to the second impedance signals, and determining delivery of the cardiac therapy in response to the comparing.