Abstract:
A winding wire (14) includes a first coil (15) formed by being wound N/2+α times between two predetermined slots (13) present in positions which are point-symmetrical with respect to a rotating shaft, and a second coil (16) formed by being wound N/2−α times between the two predetermined slots (13) which are the same as those between which the first coil (15) is formed, when a predetermined number of turns of the winding wire (14) between the predetermined slots is N.
Abstract:
An electric motor and a method for manufacturing an electric motor capable of improving rotation balance of an armature and realizing effective brake braking with a simple configuration are provided. In an electric motor including an armature core having a plurality of teeth and teeth within a yoke, a winding wound between the slots, and a commutator having and a plurality of segments to which the winding is connected, the winding has a main winding that applies a rotational force to the armature core and a brake winding that applies a braking force to the armature core, and an H bridge circuit is built between the winding and a power supply, and the main winding and the brake winding of the winding are disposed at positions for adjusting balance when the armature core rotates.
Abstract:
The motor with deceleration mechanism includes: a motor shaft (11), which is accommodated in a motor case (21) and in which an axial end portion (11a) is formed into a spherical shape; a worm, arranged on the motor shaft (11); a worm wheel, accommodated in a gear frame and engaging with the worm; a radial bearing (41), rotatably supporting the motor shaft (11); and a first thrust bearing (42), which is disposed inside the motor case (21), and in which a shaft facing surface (42s) facing the axial end portion (11a) of the motor shaft (11) and a counter shaft facing surface (42c) on the opposite side are respectively formed spherically; an average sliding radius between the first thrust bearing (42) and the motor case (21) is larger than an average sliding radius between the first thrust bearing (42) and the motor shaft (11).
Abstract:
In an electric motor, magnets (4) have two pairs of poles, the number of teeth (9) is 18, and the number of segments (14) of a commutator is 18. Winding wires (12, 25) for forming an armature coil (7) are formed by a first conductive wire (110) or a second conductive wire (120). The winding wire (25) has a first coil winding wire (7A) and a second coil winding wire (7B). The coil winding wires are each wound around four teeth (9) adjacent to each other. An end (31) of the second coil winding wire is connected to a segment (14) adjacent to a segment arranged at a position which is point symmetric with respect to a segment to which an end (30) of the first coil winding wire is connected. According to the invention, in the electric motor capable of changing the rotational speed of the armature by switching application of an electric current among three brushes, vibration and operating noise can be reduced, and mounting of the connecting wires and the winding wires can be facilitated.
Abstract:
A winding wire (14) includes a first coil (15) formed by being wound N/2+α times between two predetermined slots (13) present in positions which are point-symmetrical with respect to a rotating shaft, and a second coil (16) formed by being wound N/2−α times between the two predetermined slots (13) which are the same as those between which the first coil (15) is formed, when a predetermined number of turns of the winding wire (14) between the predetermined slots is N.
Abstract:
A wiper motor 10 includes: an armature 20; an armature shaft 21; a core 20a composed of eighteen teeth portions; a commutator 23 having eighteen commutator bars 23a1 to 23a18; and a winding 20b composed of eighteen coil portions 20b1 to 20b18; an equalizer 27 composed of nine connecting conductors 27a1 to 27a9; a first brush 36, a second brush 35 shifted from a first brush 26 by 90 degrees, and a third brush 37 shifted from the first and second brushes by 90 or more degrees, each brush being arranged so as to come in sliding contact with the commutator bars, the first brush being connected to a common electric potential, a current for rotating the armature at low speed is selectively supplied to the second brush, and a current for rotating the armature at high speed is selectively supplied to the third brush.
Abstract:
A wiper motor 10 includes: an armature 20; an armature shaft 21; a core 20a composed of eighteen teeth portions; a commutator 23 having eighteen commutator bars 23a1 to 23a18; and a winding 20b composed of eighteen coil portions 20b1 to 20b18; an equalizer 27 composed of nine connecting conductors 27a1 to 27a9; a first brush 36, a second brush 35 shifted from a first brush 26 by 90 degrees, and a third brush 37 shifted from the first and second brushes by 90 or more degrees, each brush being arranged so as to come in sliding contact with the commutator bars, the first brush being connected to a common electric potential, a current for rotating the armature at low speed is selectively supplied to the second brush, and a current for rotating the armature at high speed is selectively supplied to the third brush.