Abstract:
A main reference point PM is provided to a base portion of a shape measuring apparatus including a rotary table. An origin-point relative-value registration includes measuring a main reference point with a probe to acquire a coordinate value of the main reference point and registering as a calibration-reference-point coordinate value Pp, registering a rotation center point of the rotary table as a calibration-rotation-center coordinate value Rp, and calculating a relative coordinate value of the calibration-rotation-center coordinate value Rp with respect to the calibration-reference-point coordinate value Pp and registering as a rotary-table origin-point relative coordinate value ΔD1. A rotary-table origin-point re-registration step includes the steps of measuring the main reference point with the probe to acquire a coordinate value the main reference point and registering as a current-reference-point coordinate value Pc, and adding the rotary-table origin-point relative coordinate value ΔD1 to the current-reference-point coordinate value Pc to calculate a rotary-table origin-point current coordinate value Rc.
Abstract:
A controller of a profile measuring instrument includes: an information acquirer that acquires profile information on a profile of a workpiece and a probe command unit that calculates a probe command value for moving the probe by a movement mechanism based on the profile information acquired by the information acquirer. The probe command value is a value for causing a movement of the stylus tip along a lateral face of an imaginary cone that is imaginarily defined in accordance with the profile of the workpiece based on the profile information, the movement of the stylus tip being performed while a distance between a center of the stylus tip and a reference axis passing through a center of a bottom face of the imaginary cone and parallel to the lateral face of the imaginary cone is kept constant.
Abstract:
A controller of a profile measuring instrument includes: an information acquirer that acquires profile information on a profile of a workpiece and a probe command unit that calculates a probe command value for moving the probe by a movement mechanism based on the profile information acquired by the information acquirer. The probe command value is a value for causing a movement of the stylus tip along a lateral face of an imaginary cone that is imaginarily defined in accordance with the profile of the workpiece based on the profile information, the movement of the stylus tip being performed while a distance between a center of the stylus tip and a reference axis passing through a center of a bottom face of the imaginary cone and parallel to the lateral face of the imaginary cone is kept constant.
Abstract:
A coordinate measuring machine including a surface plate; a probe moving body; an INC pattern and ABS pattern along a moving direction of the probe moving body; an INC detector that outputs a plurality of waveform signals in accordance with the moving amount based on the INC pattern; an ABS detector that outputs an absolute position signal of the probe moving body based on the ABS pattern in response to a request signal; and a control device that has a INC counting portion that counts the waveform signals outputted by the INC detector; a position information obtaining portion that reads a counted value at a timing when a work is detected by a probe; and a presetting portion that emits the request signal to the ABS detector to obtain the absolute position signal, and presets the counting portion to this absolute position signal.
Abstract:
There is provided a method for controlling a shape measuring apparatus that relatively moves a probe and a workpiece with a translation movement mechanism and a rotary drive mechanism to perform scanning measurement on the workpiece by moving the probe along a scanning path set in advance. The method includes setting, by an operator, a scanning path and a rotation angle command for the rotary drive mechanism, dividing data about the scanning path into a plurality of segments and setting a translational velocity pattern of the translation movement mechanism for each segment, calculating for each segment, based on the rotation angle command, a rotation angle value at a start of the segment and a rotation angle value at an end of the segment and generating an angular velocity pattern for each segment, correcting the translational velocity pattern to reduce a rotation amount of the rotation command given by the angular velocity pattern and generating a corrected translational velocity pattern, and driving and controlling, based on a resultant velocity vector based on the corrected translational velocity pattern, the translation movement mechanism and simultaneously driving and controlling, based on an angular velocity command based on the angular velocity pattern, the rotary drive mechanism.
Abstract:
Controller executes a first scanning control, causing a driver to move a probe such that a tip scans along an inclined surface of a V groove to approach a center of the V groove, and a second scanning control, causing the driver to move the probe such that the tip scans along the inclined surface of the V groove to approach the center of the V groove from a side opposite that of the first scanning control. Angle calculator calculates an angle created between a direction of a deflection vector of the probe and a predetermined direction. Threshold value-correspondent coordinate obtainer obtains coordinates of the tip where the angle has changed to exceed a first threshold value during execution of the first scanning control and obtains coordinates of the tip where the angle has changed to exceed a second threshold value during execution of the second scanning control.
Abstract:
There is provided a method for controlling a shape measuring apparatus that relatively moves a probe and a workpiece with a translation movement mechanism and a rotary drive mechanism to perform scanning measurement on the workpiece by moving the probe along a scanning path set in advance. The method includes setting, by an operator, a scanning path and a rotation angle command for the rotary drive mechanism, dividing data about the scanning path into a plurality of segments and setting a translational velocity pattern of the translation movement mechanism for each segment, calculating for each segment, based on the rotation angle command, a rotation angle value at a start of the segment and a rotation angle value at an end of the segment and generating an angular velocity pattern for each segment, correcting the translational velocity pattern to reduce a rotation amount of the rotation command given by the angular velocity pattern and generating a corrected translational velocity pattern, and driving and controlling, based on a resultant velocity vector based on the corrected translational velocity pattern, the translation movement mechanism and simultaneously driving and controlling, based on an angular velocity command based on the angular velocity pattern, the rotary drive mechanism.
Abstract:
A form measuring apparatus includes a probe for measuring a measured object; a rotary table on which the measured object is placed; and a coordinate system calculator calculating coordinate axes configuring a coordinate system for the rotary table. The coordinate system calculator calculates, based on a position of a master ball fixated to the rotary table, a center of a circle traced by the master ball when the rotary table is rotated; calculates a rotary table coordinate system having the center of the circle as an origin point; and corrects coordinates of the origin point based on a calibrated diameter value of a gauge fixated to the rotary table, a first diameter value of the gauge measured by a first measurement in which the probe approaches the gauge in a first direction, and a second diameter value of the gauge measured by a second measurement.