Abstract:
An apparatus for effecting transfer of electromagnetic signals intermediate a host device and a medium adjacent to the antenna includes: (a) a plurality of antenna elements arranged in an array in facing relation with a target sector; (b) a phase adjusting unit coupled with selected antenna elements and with the host unit for transferring internal signals intermediate the host device and the antenna elements; and (c) a control unit coupled with the phase adjusting unit. The phase adjusting unit cooperates with the control unit to adjust at least one parameter relating to the electromagnetic signals intermediate the host device and the antenna elements. The adjusting is carried out to cause the antenna elements to address the sector in a timed space-sharing pattern. At least two of the plurality of antenna array, the phase adjusting unit and the control unit are implemented in a unitary structure borne upon a single silicon substrate.
Abstract:
Mixed-signal devices (300) are formed using high quality epitaxial layers of monocrystalline materials grown overlying a monocrystalline substrate such as a large silicon wafer (302), using an accommodating buffer layer (304). The accommodating buffer layer (304) is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide or an amorphous layer formed from a monocrystalline precursor. The device (300) includes passive components (314) formed away from the substrate (302), to minimize adverse signal interaction between passive component (314) signals and the substrate (302).
Abstract:
A method and apparatus for generating digitally modulated signals in which a serial data stream of digital signals to be modulated (70) is provided, the serial data stream being converted into real and imaginary components (74) which are then converted into a complex polar signal (80) representing the serial data stream. A carrier of appropriate frequency is generated by an infinite impulse response filter (84,86) and the polar signal is mixed with the output of the infinite impulse response filter to provide a representation of the complex polar signal modulated at the frequency generated by the infinite impulse response filter (88). Subsequently the imaginary component of the resulting representation is stripped from the signal (90) and the real component of the resulting representation is applied to a digital to analog converter (92) to produce an analog version of the serial data stream.