Abstract:
A method and system for wirelessly charging a plurality of electronic devices includes a charging station operable to wirelessly charge the plurality of electronic devices. A server is operable to assign a charging priority to each electronic device based on usage information. A controller is coupled to the charging station and including a transceiver for communicative coupling to the server. The controller is operable to receive the charging priority of each electronic device from the server via the transceiver and wirelessly charge the plurality of electronic devices in accordance with the charging priority of each electronic device.
Abstract:
A context-based method, a server implementing a group management function, and a mobile device predicate content delivery between mobile devices based on context. The context can include sensed events at one mobile device such as, without limitation, motion, prone positions, stress, injury, and the like. The context triggered update systems and methods can operate between two mobile devices where a determination of the context on a first mobile device formulates an update to a second mobile device with the update presented to the second mobile device based on the context. That is, the context from the first mobile device is used to formulate an update and an optimal delivery method to the second mobile device.
Abstract:
Analytic and tracking systems and methods are described that use over-the-air identifiers (OTAIs) of mobile devices for tracking, dispatch, identification, etc. In particular, the analytic and tracking systems and methods can include various OTAI sensors that are communicatively coupled to a server and with one another. The OTAI sensors are configured to identify proximate mobile devices concurrent with at least one additional piece of information. The analytic and tracking systems and methods can process identified mobile devices and the additional pieces of information for a plurality of applications.
Abstract:
A method and apparatus for uploading data is provided herein. During operation vehicles in the field will upload their digital multimedia evidence (DME) to a mobile/intermediary upload point(s). These mobile/intermediary upload points preferably comprise computers existing in other vehicles that are not currently connected to a central repository. A mobile recorder (mDVR) will choose a particular mobile/intermediary upload point(s) based on a probability that the mobile upload point(s) will return to a connected upload point to upload the transferred DME.
Abstract:
A communication system (100) provides collaboration between narrowband communication devices (102) and broadband communication devices (104) operating over different networks. The communication devices (102, 104) are linked to provide peer-to-peer communication that supports the dissemination of public safety information to a public safety personnel user utilizing the devices. Applications within the devices (102, 104) automatically control features amongst the plurality of devices for redundancy of critical information, removal of non-critical information and power management. Context information can also be examined and shared between amongst the devices.
Abstract:
A communication system (100) provides collaboration between narrowband communication devices (102) and broadband communication devices (104) operating over different networks. The communication devices (102, 104) are linked to provide peer-to-peer communication that supports the dissemination of public safety information to a public safety personnel user utilizing the devices. Applications within the devices (102, 104) automatically control features amongst the plurality of devices for redundancy of critical information, removal of non-critical information and power management. Context information can also be examined and shared between amongst the devices.
Abstract:
A communication system (100) provides collaboration between narrowband communication devices (102) and broadband communication devices (104) operating over different networks. The communication devices (102, 104) are linked to provide peer-to-peer communication that supports the dissemination of public safety information to a public safety personnel user utilizing the devices. Applications within the devices (102, 104) automatically control features amongst the plurality of devices for redundancy of critical information, removal of non-critical information and power management. Context information can also be examined and shared between amongst the devices.
Abstract:
A communication system (100) provides collaboration between narrowband communication devices (102) and broadband communication devices (104) operating over different networks. The communication devices (102, 104) are linked to provide peer-to-peer communication that supports the dissemination of public safety information to a public safety personnel user utilizing the devices. Applications within the devices (102, 104) automatically control features amongst the plurality of devices for redundancy of critical information, removal of non-critical information and power management. Context information can also be examined and shared between amongst the devices.